Free Articles, Free Web Content, Reprint Articles
Tuesday, November 21, 2017
 
Free Articles, Free Web Content, Reprint ArticlesRegisterAll CategoriesTop AuthorsSubmit Article (Article Submission)ContactSubscribe Free Articles, Free Web Content, Reprint Articles
 

Paradigm-Shifting vs. Paradigm-sustaining Science

It is interesting to note that paradigm-shifting work is often produced by non-specialist outsiders, gifted amateurs, and laymen (such as Da Vinci, Steno, Mandel, Freud, and, to some extent, Einstein)...

It is interesting to note that paradigm-shifting work is often produced by non-specialist outsiders, gifted amateurs, and laymen (such as Da Vinci, Steno, Mandel, Freud, and, to some extent, Einstein). As Thomas Kuhn noted, run of the mill scientists are vested and invested in the status quo and normally generate paradigm-sustaining theories and discoveries.

All theories - scientific or not - start with a problem. They aim to solve it by proving that what appears to be "problematic" is not. They re-state the conundrum, or introduce new data, new variables, a new classification, or new organizing principles. They incorporate the problem in a larger body of knowledge, or in a conjecture ("solution"). They explain why we thought we had an issue on our hands - and how it can be avoided, vitiated, or resolved.

Scientific theories invite constant criticism and revision. They yield new problems. They are proven erroneous and are replaced by new models which offer better explanations and a more profound sense of understanding - often by solving these new problems. From time to time, the successor theories constitute a break with everything known and done till then. These seismic convulsions are known as "paradigm shifts".

Contrary to widespread opinion - even among scientists - science is not only about "facts". It is not merely about quantifying, measuring, describing, classifying, and organizing "things" (entities). It is not even concerned with finding out the "truth". Science is about providing us with concepts, explanations, and predictions (collectively known as "theories") and thus endowing us with a sense of understanding of our world.

Scientific theories are allegorical or metaphoric. They revolve around symbols and theoretical constructs, concepts and substantive assumptions, axioms and hypotheses - most of which can never, even in principle, be computed, observed, quantified, measured, or correlated with the world "out there". By appealing to our imagination, scientific theories reveal what David Deutsch calls "the fabric of reality".

Like any other system of knowledge, science has its fanatics, heretics, and deviants.

Instrumentalists, for instance, insist that scientific theories should be concerned exclusively with predicting the outcomes of appropriately designed experiments. Their explanatory powers are of no consequence. Positivists ascribe meaning only to statements that deal with observables and observations.

Instrumentalists and positivists ignore the fact that predictions are derived from models, narratives, and organizing principles. In short: it is the theory's explanatory dimensions that determine which experiments are relevant and which are not. Forecasts - and experiments - that are not embedded in an understanding of the world (in an explanation) do not constitute science.

Granted, predictions and experiments are crucial to the growth of scientific knowledge and the winnowing out of erroneous or inadequate theories. But they are not the only mechanisms of natural selection. There are other criteria that help us decide whether to adopt and place confidence in a scientific theory or not. Is the theory aesthetic (parsimonious), logical, does it provide a reasonable explanation and, thus, does it further our understanding of the world?

David Deutsch in "The Fabric of Reality" (p. 11):

"... (I)t is hard to give a precise definition of 'explanation' or 'understanding'. Roughly speaking, they are about 'why' rather than 'what'; about the inner workings of things; about how things really are, not just how they appear to be; about what must be so, rather than what merely happens to be so; about laws of nature rather than rules of thumb. They are also about coherence, elegance, and simplicity, as opposed to arbitrariness and complexity ..."

Reductionists and emergentists ignore the existence of a hierarchy of scientific theories and meta-languages. They believe - and it is an article of faith, not of science - that complex phenomena (such as the human mind) can be reduced to simple ones (such as the physics and chemistry of the brain). Furthermore, to them the act of reduction is, in itself, an explanation and a form of pertinent understanding. Human thought, fantasy, imagination, and emotions are nothing but electric currents and spurts of chemicals in the brain, they say.

Holists, on the other hand, refuse to consider the possibility that some higher-level phenomena can, indeed, be fully reduced to base components and primitive interactions. They ignore the fact that reductionism sometimes does provide explanations and understanding. The properties of water, for instance, do spring forth from its chemical and physical composition and from the interactions between its constituent atoms and subatomic particles.

Still, there is a general agreement that scientific theories must be abstract (independent of specific time or place), intersubjectively explicit (contain detailed descriptions of the subject matter in unambiguous terms), logically rigorous (make use of logical systems shared and accepted by the practitioners in the field), empirically relevant (correspond to results of empirical research), useful (in describing and/or explaining the world), and provide typologies and predictions.

A scientific theory should resort to primitive (atomic) terminology and all its complex (derived) terms and concepts should be defined in these indivisible terms. It should offer a map unequivocally and consistently connecting operational definitions to theoretical concepts.

Operational definitions that connect to the same theoretical concept should not contradict each other (be negatively correlated). They should yield agreement on measurement conducted independently by trained experimenters. But investigation of the theory of its implication can proceed even without quantification.

Theoretical concepts need not necessarily be measurable or quantifiable or observable. But a scientific theory should afford at least four levels of quantification of its operational and theoretical definitions of concepts: nominal (labeling), ordinal (ranking), interval and ratio.

As we said, scientific theories are not confined to quantified definitions or to a classificatory apparatus. To qualify as scientific they must contain statements about relationships (mostly causal) between concepts - empirically-supported laws and/or propositions (statements derived from axioms).

Philosophers like Carl Hempel and Ernest Nagel regard a theory as scientific if it is hypothetico-deductive. To them, scientific theories are sets of inter-related laws. We know that they are inter-related because a minimum number of axioms and hypotheses yield, in an inexorable deductive sequence, everything else known in the field the theory pertains to.

Explanation is about retrodiction - using the laws to show how things happened. Prediction is using the laws to show how things will happen. Understanding is explanation and prediction combined.

William Whewell augmented this somewhat simplistic point of view with his principle of "consilience of inductions". Often, he observed, inductive explanations of disparate phenomena are unexpectedly traced to one underlying cause. This is what scientific theorizing is about - finding the common source of the apparently separate.

This omnipotent view of the scientific endeavor competes with a more modest, semantic school of philosophy of science.

Many theories - especially ones with breadth, width, and profundity, such as Darwin's theory of evolution - are not deductively integrated and are very difficult to test (falsify) conclusively. Their predictions are either scant or ambiguous.

Scientific theories, goes the semantic view, are amalgams of models of reality. These are empirically meaningful only inasmuch as they are empirically (directly and therefore semantically) applicable to a limited area. A typical scientific theory is not constructed with explanatory and predictive aims in mind. Quite the opposite: the choice of models incorporated in it dictates its ultimate success in explaining the Universe and predicting the outcomes of experiments.

To qualify as meaningful and instrumental, a scientific explanation (or "theory") must be:

  1. All-inclusive (anamnetic) – It must encompass, integrate and incorporate all the facts known.
  1. Coherent – It must be chronological, structured and causal.
  1. Consistent – Self-consistent (its sub-units cannot contradict one another or go against the grain of the main explication) and consistent with the observed phenomena (both those related to the event or subject and those pertaining to the rest of the universe).
  1. Logically compatible– It must not violate the laws of logic both internally (the explanation must abide by some internally imposed logic) and externally (the Aristotelian logic which is applicable to the observable world).
  1. Insightful – It must inspire a sense of awe and astonishment which is the result of seeing something familiar in a new light or the result of seeing a pattern emerging out of a big body of data. The insights must constitute the inevitable conclusion of the logic, the language, and of the unfolding of the explanation.
  1. Aesthetic – The explanation must be both plausible and "right", beautiful, not cumbersome, not awkward, not discontinuous, smooth, parsimonious, simple, and so on.
  1. Parsimonious – The explanation must employ the minimum numbers of assumptions and entities in order to satisfy all the above conditions.
  1. Explanatory – The explanation must elucidate the behavior of other elements, including the subject's decisions and behavior and why events developed the way they did.

i.       Predictive (prognostic) – The explanation must possess the ability to predict future events, including the future behavior of the subject.

j.        

k.     Elastic – The explanation must possess the intrinsic abilities to self organize, reorganize, give room to emerging order, accommodate new data comfortably, and react flexibly to attacks from within and from without.

Scientific theories must also be testable, verifiable, and refutable (falsifiable). The experiments that test their predictions must be repeatable and replicable in tightly controlled laboratory settings. All these elements are largely missing from creationist and intelligent design "theories" and explanations. No experiment could be designed to test the statements within such explanations, to establish their truth-value and, thus, to convert them to theorems or hypotheses in a theory.

This is mainly because of a problem known as the undergeneration of testable hypotheses: Creationism and intelligent Design do not generate a sufficient number of hypotheses, which can be subjected to scientific testing. This has to do with their fabulous (i.e., storytelling) nature and the resort to an untestable, omnipotent, omniscient, and omnipresent Supreme Being.

In a way, Creationism and Intelligent Design show affinity with some private languages. They are forms of art and, as such, are self-sufficient and self-contained. If structural, internal constraints are met, a statement is deemed true within the "canon" even if it does not satisfy external scientific requirements.

The Life Cycle of Scientific Theories

"There was a time when the newspapers said that only twelve men understood the theory of relativity. I do not believe that there ever was such a time... On the other hand, I think it is safe to say that no one understands quantum mechanics... Do not keep saying to yourself, if you can possibly avoid it, 'But how can it be like that?', because you will get 'down the drain' into a blind alley from which nobody has yet escaped. Nobody knows how it can be like that."
R. P. Feynman (1967)

"The first processes, therefore, in the effectual studies of the sciences, must be ones of simplification and reduction of the results of previous investigations to a form in which the mind can grasp them."
J. C. Maxwell, On Faraday's lines of force

" ...conventional formulations of quantum theory, and of quantum field theory in particular, are unprofessionally vague and ambiguous. Professional theoretical physicists ought to be able to do better. Bohm has shown us a way."
John S. Bell, Speakable and Unspeakable in Quantum Mechanics

"It would seem that the theory [quantum mechanics] is exclusively concerned about 'results of measurement', and has nothing to say about anything else. What exactly qualifies some physical systems to play the role of 'measurer'? Was the wavefunction of the world waiting to jump for thousands of millions of years until a single-celled living creature appeared? Or did it have to wait a little longer, for some better qualified system ... with a Ph.D.? If the theory is to apply to anything but highly idealized laboratory operations, are we not obliged to admit that more or less 'measurement-like' processes are going on more or less all the time, more or less everywhere. Do we not have jumping then all the time?

The first charge against 'measurement', in the fundamental axioms of quantum mechanics, is that it anchors the shifty split of the world into 'system' and 'apparatus'. A second charge is that the word comes loaded with meaning from everyday life, meaning which is entirely inappropriate in the quantum context. When it is said that something is 'measured' it is difficult not to think of the result as referring to some pre-existing property of the object in question. This is to disregard Bohr's insistence that in quantum phenomena the apparatus as well as the system is essentially involved. If it were not so, how could we understand, for example, that 'measurement' of a component of 'angular momentum' ... in an arbitrarily chosen direction ... yields one of a discrete set of values? When one forgets the role of the apparatus, as the word 'measurement' makes all too likely, one despairs of ordinary logic ... hence 'quantum logic'. When one remembers the role of the apparatus, ordinary logic is just fine.

In other contexts, physicists have been able to take words from ordinary language and use them as technical terms with no great harm done. Take for example the 'strangeness', 'charm', and 'beauty' of elementary particle physics. No one is taken in by this 'baby talk'... Would that it were so with 'measurement'. But in fact the word has had such a damaging effect on the discussion, that I think it should now be banned altogether in quantum mechanics."
J. S. Bell, Against "Measurement"

"Is it not clear from the smallness of the scintillation on the screen that we have to do with a particle? And is it not clear, from the diffraction and interference patterns, that the motion of the particle is directed by a wave? De Broglie showed in detail how the motion of a particle, passing through just one of two holes in screen, could be influenced by waves propagating through both holes. And so influenced that the particle does not go where the waves cancel out, but is attracted to where they co-operate. This idea seems to me so natural and simple, to resolve the wave-particle dilemma in such a clear and ordinary way, that it is a great mystery to me that it was so generally ignored."
J. S. Bell, Speakable and Unspeakable in Quantum Mechanics

"...in physics the only observations we must consider are position observations, if only the positions of instrument pointers. It is a great merit of the de Broglie-Bohm picture to force us to consider this fact. If you make axioms, rather than definitions and theorems, about the "measurement" of anything else, then you commit redundancy and risk inconsistency."
J. S. Bell, Speakable and Unspeakable in Quantum Mechanics

"To outward appearance, the modern world was born of an anti religious movement: man becoming self-sufficient and reason supplanting belief. Our generation and the two that preceded it have heard little of but talk of the conflict between science and faith; indeed it seemed at one moment a foregone conclusion that the former was destined to take the place of the latter... After close on two centuries of passionate struggles, neither science nor faith has succeeded in discrediting its adversary.
On the contrary, it becomes obvious that neither can develop normally without the other. And the reason is simple: the same life animates both. Neither in its impetus nor its achievements can science go to its limits without becoming tinged with mysticism and charged with faith."
Pierre Thierry de Chardin, "The Phenomenon of Man"

I opened with lengthy quotations by John S. Bell, the main proponent of the Bohemian Mechanics interpretation of Quantum Mechanics (really, an alternative rather than an interpretation). The renowned physicist, David Bohm (in the 50s), basing himself on work done much earlier by de Broglie (the unwilling father of the wave-particle dualism), embedded the Schrödinger Equation (SE) in a deterministic physical theory which postulated a non-Newtonian motion of particles.

This is a fine example of the life cycle of scientific theories, comprised of three phases: Growth, Transitional Pathology, and Ossification.

Witchcraft, Religion, Alchemy and Science succeeded one another and each such transition was characterized by transitional pathologies reminiscent of psychotic disorders. The exceptions are (arguably) the disciplines of medicine and biology. A phenomenology of ossified bodies of knowledge would make a fascinating read.

Science is currently in its Ossification Phase. It is soon to be succeeded by another discipline or magisterium. Other explanations to the current dismal state of science should be rejected: that human knowledge is limited by its very nature; that the world is inherently incomprehensible; that methods of thought and understanding tend to self-organize to form closed mythic systems; and that there is a problem with the language which we employ to make our inquiries of the world describable and communicable.

Kuhn's approach to Scientific Revolutions is but one of many that deal with theory and paradigm shifts in scientific thought and its resulting evolution. Scientific theories seem to be subject to a process of natural selection every bit as organisms in nature are.

Animals could be thought of as theorems (with a positive truth value) in the logical system "Nature". But species become extinct because nature itself changes (not nature as a set of potentials - but the relevant natural phenomena to which the species are exposed). Could we say the same about scientific theories? Are they being selected and deselected partly due to a changing, shifting backdrop?

Indeed, the whole debate between "realists" and "anti-realists" in the philosophy of Science can be settled by adopting this single premise: that the Universe itself is not immutable. By contrasting the fixed subject of study ("The World") with the transient nature of Science anti-realists gained the upper hand.

Arguments such as the under-determination of theories by data and the pessimistic meta-inductions from past falsity (of scientific "knowledge") emphasize the transience and asymptotic nature of the fruits of the scientific endeavor. But such arguments rest on the implicit assumption that there is some universal, invariant, truth out there (which science strives to asymptotically approximate). This apparent problematic evaporates if we allow that both the observer and the observed, the theory and its subject, are alterable.

Science develops through reduction of miracles. Laws of nature are formulated. They are assumed to encompass all the (relevant) natural phenomena (that is, phenomena governed by natural forces and within nature). Ex definitio, nothing can exist outside nature: it is all-inclusive and all-pervasive, or omnipresent (formerly the attributes of the divine).

Supernatural forces, supernatural intervention, are contradictions in terms, oxymorons. If some thing or force exists, it is natural. That which is supernatural does not exist. Miracles do not only contravene (or violate) the laws of nature, they are impossible, not only physically, but also logically. That which is logically possible and can be experienced (observed), is physically possible.

But, again, we are faced with the assumption of a "fixed background". What if nature itself changes in ways that are bound to confound ever-truer knowledge? Then, the very shifts of nature as a whole, as a system, could be called "supernatural" or "miraculous".

In a way, this is how science evolves. A law of nature is proposed or accepted. An event occurs or an observation made which are not described or predicted by it. It is, by definition, a violation of the suggested or accepted law which is, thus, falsified. Subsequently and consequently, the laws of nature are modified, or re-written entirely, in order to reflect and encompass this extraordinary event. Result: Hume's comforting distinction between "extraordinary" and "miraculous" events is upheld (the latter being ruled out).

Extraordinary events can be compared to previous experience - miraculous events entail some supernatural interference with the normal course of things (a "wonder" in Biblical terms). It is by confronting the extraordinary and eliminating its "abnormal" or "supernatural" attributes that science progresses as a miraculous activity. This, of course, is not the view of the likes of David Deutsch (see his book, "The Fabric of Reality").

Back to the last phase of this Life Cycle, to Ossification. The discipline degenerates and, following the "psychotic" transitional phase, it sinks into a paralytic state which is characterized by the following:

All the practical and technological aspects of the dying discipline are preserved and continue to be utilized. Gradually the conceptual and theoretical underpinnings vanish or are replaced by the tenets and postulates of a new discipline - but the inventions, processes and practical know-how do not evaporate. They are incorporated into the new discipline and, in time, are erroneously attributed to it, marking it as the legitimate successor of the now defunct, preceding discipline.

The practitioners of the old discipline confine themselves to copying and replicating the various aspects of the old discipline, mainly its intellectual property (writings, inventions, other theoretical material). This replication does not lead to the creation of new knowledge or even to the dissemination of old one. It is a hermetic process, limited to the ever decreasing circle of the initiated. Special institutions govern the rehashing of the materials related to the old discipline, their processing and copying. Institutions related to the dead discipline are often financed and supported by the state which is always an agent of conservation, preservation and conformity.

Thus, the creative-evolutionary dimension of the now-dead discipline is gone. No new paradigms or revolutions happen. The exegesis and replication of canonical writings become the predominant activities. Formalisms are not subjected to scrutiny and laws assume eternal, immutable, quality.

All the activities of the adherents of the old discipline become ritualized. The old discipline itself becomes a pillar of the extant power structures and, as such, is condoned and supported by them. The old discipline's practitioners synergistically collaborate with the powers that be: with the industrial base, the military complex, the political elite, the intellectual cliques in vogue. Institutionalization inevitably leads to the formation of a (mostly bureaucratic) hierarchy.

Emerging rituals serve the purpose of diverting attention from subversive, "forbidden" thinking. These rigid ceremonies are reminiscent of obsessive-compulsive disorders in individuals who engage in ritualistic behavior patterns to deflect "wrong" or "corrupt" thoughts. 

Practitioners of the old discipline seek to cement the power of its "clergy". Rituals are a specialized form of knowledge which can be obtained only by initiation ("rites of passage"). One's status in the hierarchy of the dead discipline is not the result of objectively quantifiable variables or even of judgment of merit. It is the outcome of politics and other power-related interactions.

The need to ensure conformity leads to doctrinarian dogmatism and to the establishment of enforcement mechanisms. Dissidents are subjected to both social and economic sanctions. They find themselves ex-communicated, harassed, imprisoned, tortured, their works banished or not published, ridiculed and so on.

This is really the triumph of text over the human spirit. At this late stage in the Life Cycle, the members of the old discipline's community are oblivious to the original reasons and causes for their pursuits. Why was the discipline developed in the first place? What were the original riddles, questions, queries it faced and tackled? Long gone are the moving forces behind the old discipline. Its cold ashes are the texts and their preservation is an expression of longing and desire for things past.

The vacuum left by the absence of positive emotions is filled by negative ones. The discipline and its disciples become phobic, paranoid, defensive, and with a faulty reality test. Devoid of the ability to generate new, attractive content, the old discipline resorts to motivation by manipulation of negative emotions. People are frightened, threatened, herded, cajoled. The world is painted in an apocalyptic palette as ruled by irrationality, disorderly, chaotic, dangerous, or even lethal. Only the old discipline stands between its adherents and apocalypse.

New, emerging disciplines, are presented as heretic, fringe lunacies, inconsistent, reactionary and bound to regress humanity to some dark ages. This is the inter-disciplinary or inter-paradigm clash. It follows the Psychotic Phase. The old discipline resorts to some transcendental entity (God, Satan, or the conscious intelligent observer in the Copenhagen interpretation of the formalism of Quantum Mechanics). In this sense, the dying discipline is already psychotic and afoul of the test of reality. It develops messianic aspirations and is inspired by a missionary zeal and zest. The fight against new ideas and theories is bloody and ruthless and every possible device is employed.

But the very characteristics of the older nomenclature is in the old discipline's disfavor. It is closed, based on ritualistic initiation, and patronizing. It relies on intimidation. The numbers of the faithful dwindle the more the "church" needs them and the more it resorts to oppressive recruitment tactics. The emerging discipline wins by default. Even the initiated, who stand most to lose, finally abandon the old discipline. Their belief unravels when confronted with the truth value, explanatory and predictive powers, and the comprehensiveness of the emerging discipline.

This, indeed, is the main presenting symptom, the distinguishing hallmark, of paralytic old disciplines. They deny reality. They are rendered mere belief-systems, myths. They require  the suspension of judgment and disbelief, the voluntary limitation of one's quest for truth and beauty, the agreement to leave swathes of the map in a state of "terra incognita". This reductionism, this schizoid avoidanceArticle Search, the resort to hermeticism and transcendental authority mark the beginning of the end.


Source: Free Articles from ArticlesFactory.com

ABOUT THE AUTHOR


Sam Vaknin ( http://samvak.tripod.com ) is the author of Malignant Self Love - Narcissism Revisited and After the Rain - How the West Lost the East as well as many other books and ebooks about topics in psychology, relationships, philosophy, economics, and international affairs.

He served as a columnist for Central Europe Review, Global Politician, PopMatters, eBookWeb , and Bellaonline, and as a United Press International (UPI) Senior Business Correspondent. He was the editor of mental health and Central East Europe categories in The Open Directory and Suite101.

Visit Sam's Web site at http://samvak.tripod.com



Health
Business
Finance
Travel
Technology
Home Repair
Computers
Marketing
Autos
Family
Entertainment
Education
Law
Communication
Other
Sports
ECommerce
Home Business
Self Help
Internet
Partners


Page loaded in 0.031 seconds