Management of Renewable Energies and Environmental Protection, Part I

  • Share this article on Facebook
  • Share this article on Twitter
  • Share this article on Linkedin

The purpose of this project is to present an overview of renewable energy sources, major technological developments and case studies, accompanied by applicable examples of the use of sources. Renewable energy is the energy that comes from natural resources: The wind, sunlight, rain, sea waves, tides, geothermal heat, regenerated naturally, automatically. Greenhouse gas emissions pose a serious threat to climate change, with potentially disastrous effects on humanity.

mediaimage

The use of Renewable Energy Sources (RES) together with improved Energy Efficiency (EE) can contribute to reducing energy consumption,Management of Renewable Energies and Environmental Protection, Part I Articles reducing greenhouse gas emissions and, as a consequence, preventing dangerous climate change. At least one-third of global energy must come from different renewable sources by 2050: The wind, solar, geothermal, hydroelectric, tidal, wave, biomass, etc. Oil and natural gas, classical sources of energy, have fluctuating developments on the international market. A second significant aspect is given by the increasingly limited nature of oil resources. It seems that this energy source will be exhausted in about 50 years from the consumption of oil reserves in exploitation or prospecting. "Green" energy is at the fingertips of both economic operators and individuals. In fact, an economic operator can use such a system for both own consumption and energy trading on the domestic energy market. The high cost of deploying these systems is generally depreciated in about 5-10 years, depending on the installed production capacity. The "sustainability" condition is met when projects based on renewable energy have a negative CO2 or at least neutral CO2 over the life cycle. Emissions of Greenhouse Gases (GHG) are one of the environmental criteria included in a sustainability analysis, but is not enough. The concept of sustainability must also include in the assessment various other aspects, such as environmental, cultural, health, but must also integrate economic aspects. Renewable energy generation in a sustainable way is a challenge that requires compliance with national and international regulations. Energy independence can be achieved: - Large scale (for communities); - small-scale (for individual houses, vacation homes or cabins without electrical connection).

Keywords: Environmental Protection, Renewable Energy, Sustainable Energy, The Wind, Sunlight, Rain, Sea Waves, Tides, Geothermal Heat, Regenerated Naturally.

Introduction

The purpose of this project is to present an overview of renewable energy sources, major technological developments and case studies, accompanied by applicable examples of the use of sources.

Renewable energy is the energy that comes from natural resources: The wind, sunlight, rain, sea waves, tides, geothermal heat, regenerated naturally, automatically.

Greenhouse gas emissions pose a serious threat to climate change, with potentially disastrous effects on humanity. The use of Renewable Energy Sources (RES) together with improved Energy Efficiency (EE) can contribute to reducing energy consumption, reducing greenhouse gas emissions and, as a consequence, preventing dangerous climate change.

At least one-third of global energy must come from different renewable sources by 2050: The wind, solar, geothermal, hydroelectric, tidal, wave, biomass, etc.

Oil and natural gas, classical sources of energy, have fluctuating developments on the international market. A second significant aspect is given by the increasingly limited nature of oil resources. It seems that this energy source will be exhausted in about 50 years from the consumption of oil reserves in exploitation or prospecting.

"Green" energy is at the fingertips of both economic operators and individuals.

In fact, an economic operator can use such a system for both own consumption and energy trading on the domestic energy market. The high cost of deploying these systems is generally depreciated in about 5-10 years, depending on the installed production capacity.

The "sustainability" condition is met when projects based on renewable energy have a negative CO2 or at least neutral CO2 over the life cycle.

Emissions of Greenhouse Gases (GHG) are one of the environmental criteria included in a sustainability analysis, but is not enough. The concept of sustainability must also include in the assessment various other aspects, such as environmental, cultural, health, but must also integrate economic aspects.

Renewable energy generation in a sustainable way is a challenge that requires compliance with national and international regulations.

Energy independence can be achieved:

  • Large scale (for communities)
  • Small-scale (for individual houses, vacation homes or cabins without electrical connection)

Today, the renewable energy has gained an avant-garde and a great development also thanks to governments and international organizations that have finally begun to understand its imperative necessity for humanity, to avoid crises and wars, to maintain a modern life (we can’t go back to caves).

Materials and Methods

Solar Energy

Solar energy means the energy that is directly produced by the transfer of light energy radiated by the Sun into other forms of energy. This can be used to generate electricity or to heat the air and water. Although solar energy is renewable and easy to produce, the main problem is that the sun does not provide constant energy over a day, depending on the day-night alternation, weather conditions, season.

Solar Panels generate electricity approx. 9h/day (the calculation is minimal, the winter is 9 h), feeding the consumers and charging the batteries at the same time.

Solar installations are of two types: Thermal and photovoltaic.

Photovoltaics produce electricity directly, thermal ones help save 75% of other fuels (wood, gas) per year. A house that has both solar installations (with photovoltaic and vacuum thermal panels) can be considered "energy independence" (because the energy accumulated in the day is then sent to the grid and used as needed).

The use of solar radiation for the production of electricity can be done by several methods:

  • The use of photovoltaic modules - by capturing the energy of the photons coming from the sun and storing it in free electrons, thereby generating an electric current, solar photovoltaic panels generating electricity
  • The use of solar towers
  • Using Parabolic Concentrators - This type of concentrator consists of a gutter-shaped parabolic mirror that concentrates solar radiation on a pipe. A working fluid is circulating in the duct which is generally an oil that takes up the heat to give it water to produce the steam that drives the turbine of an electric generator. The concentrator requires adjusting the posture position of the sun in the apparent daytime displacement
  • Using the Dish-Stirling system

Solar installations work even when the sky is dark. They are also resistant to hail (in the case of the best panels).

Solar-thermal systems are mainly made with flat-bottomed solar collectors or vacuum tubes, especially for smaller solar radiation in Europe. In the energy potential assessments, applications concerning water heating or enclosures/swimming pools (domestic hot water, heating, etc.) were considered.

Locations for solar-thermal applications (thermal energy).

In this case, any available space can be used if:

  • Allows the location of solar thermal collectors
  • Preferential orientation to the South and inclination according to location latitude

This is the case for roofs of houses/blocks, adjacent buildings (covered parking lots, etc.) or land on which solar-thermal collectors can be located (Aversa et al., 2017 a-d; 2016 a-d; Petrescu et al., 2016 a-b; Mirsayar et al, 2017; Blue Planet; World Tree, From Wikipedia; Giovanni et al., 2012).

For the solar photovoltaic potential, both photovoltaic power grid applications and autonomous (non-grid) applications for isolated consumers were considered.

Solar energy can be used very easily - with a photovoltaic system. This type of system transforms the sunlight into electricity throughout the year, with the point that only high-quality photovoltaic systems that produce electricity over a long time are profitable. The system also allows other energy sources to be coupled with solar energy such as wind energy produced by a turbine. Obviously, besides the converter, it is also necessary to have a battery that is strong enough to retain as much energy as possible during the night, or when the consumption amount is very low and to release it when necessary. A system for producing, distributing and maintaining renewable energies for a house, cottage, motel, hospital, even located in isolated places, where the power grid does not reach, is presented in the figure 3. If the wind does not blow in a long period and the sky is not sunny, it is necessary to have an electric generator inserted into the system.

Wind Potential

The winds are due to the fact that the Earth's equatorial regions receive more solar radiation than the polar regions, thus creating a large number of convection currents in the atmosphere. According to meteorological assessments, about 1% of the solar input is converted to wind energy, while 1% of the daily wind energy contribution is roughly equivalent to the world's daily energy consumption. This means that global wind resources are in large, widespread quantities. More detailed assessments are needed to quantify resources in certain areas.

Wind energy production began very early centuries ago, with sailboats, windmills and grain mowers. It was only at the beginning of this century that high-speed wind turbines were developed to generate electricity. The term wind turbine is widely used today for a rotating blade machine that converts the kinetic energy of the wind into useful energy. Currently there are two categories of base wind turbines: Wind turbine Wind Turbines (HAWT) and Vertical Wind Turbines (VAWT), depending on the axis orientation of the rotor.

Wind power applications involve electricity generation, with wind turbines operating in parallel to network or utility systems, in remote locations, in parallel with fossil-fueled engines (hybrid systems). The gain resulting from the wind energy exploitation consists both in the low consumption of fossil fuels as well as the reduction of the overall costs of generating electricity. Electric utilities have the flexibility to accept a contribution of about 20% of wind power systems. Combined Eolian-diesel systems can offer fuel savings of over 50%.

Wind power generation is a fairly new industry (20 years ago in Europe, wind turbines had not yet reached commercial maturity). In some countries, wind energy is already competing with fossil fuel and nuclear energy, even without considering the benefits of wind energy for the environment.

When estimating the cost of electricity produced in conventional power plants, their influence on the environment (acid rain, effects of climate change, etc.) is usually not taken into account. Wind energy production continues to improve by reducing costs and increasing efficiency.

The cost of wind energy is between 5-8 cents per kWh and is expected to fall to 4 cents per kWh in the near future. Maintenance of wind energy projects is simple and inexpensive. Amounts of money paid to farmers for land renting provide additional income to rural communities. Local companies that carry out the construction of wind farms provide short-term local jobs while long-term jobs are created for maintenance work. Wind energy is a rapidly growing industry in the world.

An indispensable requirement for the use of wind to produce energy is a constant flow of strong wind. The maximum power Wind Turbines (WTS) are designed to generate is called "rated power" and the wind speed at which nominal power is reached is "wind speed at rated power". This is chosen to suit the wind speed in the field and is generally about 1.5 times the average wind speed in the ground. One way to classify wind speed is the Beaufort scale that provides a description of the wind characteristics. It was originally designed for sailors and described the state of the sea, but was later modified to include wind effects in the field.

The power produced by the wind turbine increases from zero, below the starting wind speed (usually around 4 m/s, but again, depending on the location) to the maximum at wind speed at rated power. Above the wind speed at rated power, the wind turbine continues to produce the same rated power, but at lower output until it stops, when the wind speed becomes dangerously high, ie over 25 to 30 m/s (vigorous storm). This is the shut off speed of the wind turbine. Exact specifications for identifying the energy produced by a wind turbine depend on the wind speed distribution during the year in the field.

Air currents can be used to train wind turbines. Modern wind turbines produce a power of between 600 KW and 5 MW, the most used being the 1.5-3 MW output power, being more simple and constructive and more suitable for commercial use. The output power of a typical wind turbine is dependent on the wind speed at the third power so that wind speed increases, the power generated by the turbine increases with the wind speed cube, the increase being spectacular. The world's technical potential for wind power can provide five times more energy than it is consumed now.

In the strategy for capitalizing on renewable energy sources, the declared wind potential is 14,000 MW (installed power), which can provide an amount of energy of about 23,000 GWh/year. These values represent an estimate of the theoretical potential and must be reproduced in correlation with the possibilities of technical and economic exploitation. Starting from the theoretical wind potential, what interests the energy development forecasts is the potential for practical use in wind applications, which is much smaller than the theoretical potential, depending on the possibilities of land use and the conditions on the energy market. That is why the economically profitable wind potential can be appreciated only in the medium term, based on the technological and economic data known today and considered as valid in the medium term.

Under ideal conditions, the theoretical maximum of cp is 16/27 = 0.593 (known as the Betz limit) or, in other words, a wind turbine can theoretically extract 59.3% of the airflow energy. Under real conditions, the power factor does not reach more than 50%, as it includes all wind turbine wind turbine losses. In most of today's technical publications, the cp value covers all losses and represents the product cp * h. The power output and the extraction potential differ depending on the power coefficient and the turbine efficiency.

If cp reaches the theoretical maximum, the wind speed immediately behind the rotor - v2 is only 1/3 of the speed in front of the rotor v1. Therefore wind turbines located in a wind farm produce less energy as a result of the reduction in wind speed caused by the wind turbines in front of them. Increasing the distance between wind turbines can reduce energy loss as wind flow will accelerate again. A correctly designed wind farm may therefore have less than 10% losses due to mutual interference effects.

Average annual power will vary from land to land. In high wind speeds, more energy will be obtained. This highlights the importance of strong winds and hence the implications of the wind climate on economic issues related to wind energy production.

Blasts are responsible for mixing air and their action can be considered in a similar way to molecular diffusion. As the vortex passes through the measuring point, the wind speed takes the value of that whirlpool for a period of time proportional to the magnitude of the whirlpool; this is a "gust". In most cases, load variation is not significant. However, if the vortex scale is of the same magnitude as the scale of a component of the turbine, then the variation in load may affect the overall component. A gust of 3 sec corresponds to a whirl of about 20 m (e.g., similar to the length of a rotor blade), while a 15 sec burst corresponds to a 50 m swirl.

To calculate the maximum possible load for a turbine or its components over the lifetime of the turbine, the highest burst value is used for a relevant period of time. This is formulated as the maximum wind speed and gust speed over a 50-year period. Of course, wind speed can be exceeded during this period, the sizing reserve will allow for some overtaking. Calculation of stresses is particularly important for flexible structures, such as turbines, which are more susceptible to wind-induced damage than rigid structures such as buildings.

A wind turbine can be placed almost anywhere in a sufficiently open terrain. Nevertheless, a wind farm is a commercial project and therefore it is necessary to try to optimize its profitability. This is important not only for the profitability during the lifetime of the exploitation but also for the mobilization of capital in the initial phase of project development. For economical planning of investments in wind energy, it is necessary to know as safely as possible the prevailing wind conditions in the area of interest.

Due to lack of time and financial reasons, long-term measurement periods are often avoided. As a substitute, mathematical methods can be used to predict wind speeds at each location. Wind conditions and energy production resulting from the calculation can serve as the basis for economic calculations. In addition, simulation of wind conditions can be used to correlate wind measurements at a particular location with wind conditions in neighboring locations in order to determine the wind regime for a whole area.

Since wind speed can vary significantly over short distances, for example several hundred m, wind turbine location assessment procedures generally take into account all regional parameters that are likely to influence wind conditions.

Such parameters are:

  • Obstacles in the immediate vicinity
  • Topography of the environment in the measure region, which is characterized by vegetation, land use and buildings (description of the roughness of the soil)
  • Horoscopes, such as hills, may cause airflow acceleration or deceleration effects

For the calculation of the annual average power density in the field, a more accurate estimate of the average annual wind speed is required. Then, information on the wind speed distribution over time is needed. To obtain these trusted data, data sets that cover several years are needed, but usually these data are estimated using appropriate models from shorter-date data sets. After that, it is possible to determine the potential energy produced in relation to the performance of the wind turbine.

The most widespread procedure for long-term prediction of wind speed and energy efficiency in a land is the WAsP Wind Atlas.

The model quantifies the wind potential at different heights of the rotor shaft above ground for different locations, taking into account the distribution of wind speed (in time and space) at meteorological stations (measurement points).

The reference station could be up to 50 km away from the site. The projected energy output for this location can be calculated in relation to the power curve associated with the wind turbine (wind power). A key element of the WASP model is that it uses polar coordinates for the origin of the location of interest.

The WAsP incorporates both physical atmospheric models and statistical descriptions of the wind climate.

The physical models used include:

  • The similarity in the surface layer - considering the logarithmic law
  • The Geostrophic Wind Law
  • Stability corrections-to allow for variation from neutral stability
  • Change of roughness-to allow changes in land use throughout the area
  • Shelter model-modeling the effect of an obstacle on wind flow
  • Orographic model-modeling the effect of accelerating the wind speed in the field

The wind regime is described statistically by a Weibull distribution derived from the reference data. The Weibull distribution is designed to best fit the high wind speeds.

Depending on the complexity of the examined regions, different procedures are used to determine the wind conditions. In addition to the WAsP model mentioned above, there are other procedures such as mesoscales models.

Such measurements, usually performed over a period of one year, may be related to neighboring areas or may be extrapolated to the height of the rotor axis of certain types of turbines using the flow simulation described above.

Evaluating wind resources at a location ideally asks for data series for as long as possible at the location of the turbines. In addition, it is useful to understand the turbulence in the field and the rotor axis for the design of wind turbines. To do this, a quick time sample and spatial distribution of measurement points is required. In practice, time and expenses often exclude such a thorough investigation. Imitations are provided in the section on meteorology and wind structure.

Wind velocity measurements are the most critical measurements for wind resource valuation, performance determination and energy production. In economic terms, uncertainties are transformed directly into financial risk. There is no other branch in which the uncertainty of the measurements is as important as in wind energy. Due to the lack of experience, a lot of wind speed measurements have inaccurately high uncertainties, as best practices in the anemometer selection standards, anemometer calibration, anemometer fitting and measurement field selection have not been applied.

Investigations have shown that certain anemometers are highly susceptible to vertical air flow, which, under real conditions, even appear in open ground due to turbulence. In complex terrain these effects are of great importance and lead to over or underestimation of real wind conditions. Only a few types of anemometers can avoid these effects.

A representative positioning of the measuring point within the wind farm shall be chosen. For large power plants in complex terrain, 2 or 3 representative positions should be chosen for the installation of the pillar. At least one of the measurements must be made at the height of the rotor shaft of the future turbine to be installed, since extrapolation from a smaller height to the height of the rotor shaft gives rise to additional uncertainties. If one of the measuring posts is positioned close to the wind farm area, it can be used as the reference wind speed measuring pole during the boiler operation and for determining the wind energy performance by sectors.

Measurement of wind speed and direction are obviously necessary, but also other parameters, particularly air pressure and temperature. The equipment used for these measurements must be robust and safe, since it will generally be left unattended for long periods of time.

Average wind speed is usually collected using cup anemometers because they are safe and cheaper. These anemometers often have better response characteristics than those used at weather observation centers. Wind direction is measured with a girue. Giruetes are usually wound potentiometers. Giruge will be affected by the shade of the pillar and is often oriented so that the pillar is in the least likely wind direction. If data about the vertical flow of air is required, three-dimensional data is useful. These are obtained if lesser robust propeller anemometers are used, or sonic anemometers, which are more expensive.

These anemometers indicate information about both speed and wind direction. The data should be taken at a high frequency, possibly 20 Hz.

It is important that data transmission and storage is secure. For this purpose, the logger must be carefully isolated from atmospheric conditions, especially rain. Many experiments have suffered significant data loss due to various problems, including water infiltration or loss of electricity. The most promising locations for wind farms are usually in hostile environments, but a host of trusted data loggers are available on the market.

It is possible to collect data remotely and download data via a telephone line. The advantage is that data can be monitored on a regular basis and any other problems that occur with the tools can be resolved quickly. For the development of a wind energy project it is essential to carefully plan the data collection step.

Daily weather information is usually available free of charge from weather services. However, for statistical data and consultancy services fees are charged.

In South Europe, the wind regime is dominated by seasonal winds. Winter cold weather is associated with the northern and northest winds. These variations can be seen in station records for wind speed and temperature.

Certain studies suggest that a minimum of 8 months of data is required for the adequate estimation of wind resources. Other researchers have suggested that winter wind is the most important because it coincides with peak demand for electricity. The data can then be sorted into ranges or "boxes" for wind speed or wind direction, either as a whole. The number of measurements in each box is then counted and the sorted data is plotted as a percentage of the total number of readings to indicate the frequency distribution.

From these data it is possible to calculate the average wind speed and wind speed most likely. It is possible to obtain the distribution of the wind power density (proportional to the cubic wind speed). Data may also be presented as the probability of a higher wind velocity than another given value, usually zero, u> 0. These data can be represented by two parameters from the Weibull distribution, the k and C parameters resulting from the use of certain techniques such as the moment method, the least squares method and many others. The two parameters of the Weibull distribution match for many wind data with acceptable accuracy.

The data collected are representative, for example, that the year is not particularly windy or calm. To be sure, data is needed for about 10 years. Obviously this is not practical for a location. However, it is possible to compare the wind data from the location with those of a nearby weather station and apply a MCP-type methodology to increase the data set actually measured at 10 years.

There are a number of available MCP methods, such as:

  1. Calculate the Weibull parameters from the location of interest and the reference location and correlate them over the measurement period and then apply the correction for the rest of the reference data
  2. Calculation of the correction factor (coefficient) for the wind speed between the location of interest and the reference point, during the measurements and on each step of the wind direction
  3. Correlate measured data with reference data by determining a continuous function between the two for all data over the measurement period and applying it for the rest of the reference data

Once the wind distribution probability density is established, the power curve of a turbine can be correlated with wind data to determine the turbine power density density. The data can of course apply to different types and configurations of turbines for optimizing results.

The annual energy output of a wind turbine is the most important economic factor. Uncertainties in determining the annual speed and power curve contribute to the overall uncertainty of predicted annual energy production and lead to a high financial risk.

Annual energy production can be estimated by the following two methods:

  • Wind velocity histogram and power curve
  • Theoretical wind distribution and power curve

In addition to the wind regime, there are several factors that must be considered at the final choice of the optimal location for the installation of the wind farm. Mostly these include:

  • Access to the electricity network
  • Access road
  • Local effects on the environment, including landscape damage
  • Approaching housing
  • Noise effects
  • Interference with radio and TV signals

The locations of wind farms and the associated weather conditions have made engineers face many challenges to meet the design requirements of the plants and installed systems. Poor access to the site may prevent large and heavy components from being delivered, the rocky terrain makes it difficult to install as well as the electrical grounding system and rain and fog can lead to water infiltration in the cable connections.

The construction and operation of a wind power plant require the use of heavy equipment for the preparation of the land, the transport of construction materials and the components of the project, as well as for the lifting of turbines, electric poles and towers. Thus, there could be a potential risk that wind projects will affect rural roads designed for low traffic or light vehicles. Existing rooftops should be rebuilt or reinforced to withstand additional loads without degrading and the frequency of planned maintenance for these roads could increase.

It is generally recommended:

  • Construction of small roads and use of maintenance techniques to reduce a temporary or permanent loss of land
  • Restricting vehicles for existing access roads
  • Limiting the number of new access roads, the width of new roads and avoiding or minimizing cuts or fillings
  • Building new access roads that follow the existing contours to the greatest possible extent

Wind turbines are typically located in rural or mountain areas, where the connection to the nearest substation may be weak and local demand for electricity may be much lower than the capacity of the boiler plant. One way to define the "power" of the transmission network is the fault level, which is a measure of the current to flow when a network failure occurs. At the end of a long electric circuit, the fault level is much lower than in the center of an interconnected network, for example in a city or industrial center.

At a low defect level, the impact of wind turbines may be large enough to disturb other local consumers. For this reason, in some cases, it is necessary to strengthen the network, or to connect the network to a higher voltage or to a more remote area where the network is strengthened. This will increase costs.

In rural or mountainous areas, it is preferable that the closest point of the power grid be to an over ground line rather than underground. Here you can find a number of electric poles or pillars that will help FPE engineers locate the land of interest on their system map and then be able to define the voltage of the power line. Any two-wire airline is in one-phase system and normally requires reinforcement if generators are to be installed.

The technically-economical design of the electrical collection system for a power plant and its connection to the power grid is a process of optimizing several parameters and requires extensive experience from the designer/engineer as well as the availability of mild calculation systems to easily find the best solution.

Typically, the overall appearance of the wind farm is based on optimizing the park's production with regard to the location of individual turbines and their accessibility - That is infrastructure. The contribution of the short-circuit in the network is an important parameter, depending on the availability and evaluation of electrical equipment - Transformers, cables, main ring units, switches, etc. - Choose a solution that meets the basic electrical design requirements and check it by defective current calculations.

The loss calculation is based on the wind farm production profile, calculated from the parameters that describe the wind - the parameters of the Weibull distribution - and the power curve of the wind  turbines concerned.

Wind power plants offer a number of important advances compared to conventional coal, oil or natural gas plants; i.e., do not use fuel, do not emit pollutants, greenhouse gases, or toxic waste and do not consume water or other rare resources. However, wind power plants can raise environmental and community concerns. For example, they generate noise and can be visually intrusive for residents living near them. They can also disrupt wild habitats and cause the wounding or death of birds.

The construction and operation of a wind power plant involve many of the construction and operation activities of a conventional power plant, including road construction, land clearing, trafficking in large-scale machinery and construction of connection and transport lines. In addition, wind projects raise community-related issues, particularly with regard to visual impact and noise.

Unlike most power plants, wind power projects are more intrusive than terrain than intensive. For the production of a MW, the land needed for a wind energy project exceeds the land needed for most of the energy generation technologies. However, while wind facilities can expand on a large geographic area and have a wide range of influence, the physical footprint project covers a relatively small portion of this field. A wind power project of 50 MW, for example, can occupy a land of 1500 acres, but the actual land area occupied by wind power plants may be only three to five percent of the total area, leaving the rest available for other uses compatible.

Since wind energy production is limited to areas where weather conditions predict a relatively long season of strong and consistent wind resources, the development of wind projects worldwide has mainly occurred in rural and relatively open areas. These lands are often used for agriculture, grazing, recreation, open spaces, scenic areas, wildlife habitat, forest management and seasonal irrigation deposit. The development of wind energy is usually compatible with farm or grazing a site.

Developing wind projects may affect other uses in/or adjacent to a site (location), or in the surrounding area. Some recreational parks and uses that highlight wildlife values and wildlife conservation reserves - especially birds-can’t be compatible with the development of nearby wind projects.

Wind turbines are extremely visible structures. Modern wind turbine towers measure from 30 to 50 m above ground without counting the rotor blades that can reach up to 40 feet in diameter. In addition, most of the times the turbines are arranged in dozens of paintings or more on visible hills and hills. If the visual impact of wind turbines generates complaints depends in part on where they are installed.

Whatever the location, action can be taken to reduce the number of complaints by building less impressive and more enjoyable turbines. For example, tubular towers are less offensive than lattice towers.

The vast majority of those affected by the noise produced by wind turbines live a few miles from high-powered wind power plants or a few hundred m from a small or individual turbine plant. Although the noise at these distances is not very high - a 300 kW turbine produces a noise level at 120 m less than that produced by a traffic light at 30 m away - it is still loud enough to hear in the rooms and can be significant at night when traffic and home noise are diminished.

When planning a wind project, attention should be paid to any noise that could be heard outside the nearby buildings. Inside, the noise level is probably lower even with the windows open. The noise that will be produced when the wind blows from the turbines to the houses, usually characterizes the impact of potential noise. It is then compared to the background noise already existing in the area without the wind farm functioning.

In recent years, the potential effects of wind projects on wildlife and natural spaces have been highlighted.

There may be problems in many locations, as some of the characteristics of a good location for wind farms are also attractive for birds. For example, mountain passes are frequently windy because they provide a channel for the wind to pass through the mountain; for the same reason, they are often the preferred routes for migratory birds.

An important aspect is the significance of deaths and bodily injuries to the local bird population. Ideally, birds should not be killed, but this is not practicable in many cases.

Some studies have shown that birds and other animals tend to avoid nesting or hunting in the immediate vicinity of wind turbines. In addition, activities such as road construction and tree deforestation can destroy habitats and allow the introduction of unwanted species. The problem is aggravated by the fact that the best turbine locations are located isolated in areas that host different plant and animal species.

During the development of a wind project, locations with archaeological or cultural resonance must be protected and avoided. The potential impact area of a wind project may range from a few dozen meters up to a kilometer or more. That is why in the set of approvals required for a wind project is usually required the opinion of the authorities in the field of culture and archaeological heritage. During the installation of the wind infrastructure, archaeological monitoring is carried out by the competent authorities for sites that may contain archaeological vestiges.

In general, in the site selection process, a site plan is required to certify the conditions for fitting a wind farm. Such plans shall establish conditions and criteria such as:

  • Wind turbine size, including maximum rotor size, minimum and maximum height, tower height, etc
  • Installation and design including tower and rotor, utilities notification, warning signs and tower access
  • Set-up, including the withdrawal distance of the boiler from neighboring facilities, roads, other wind power plants, aesthetic design (such as a tubular or lattice tower) and proximity to the power line
  • Noise and radio and TV interference regulations
  • Other regulations, including insurance, public access to wind installations and decommissioning requirements

References 

  1. Antonio Apicella, Raffaella Aversa, Relly Victoria Petrescu, Daniela Parcesepe, Francesco Tamburrino and Florian Ion T. Petrescu, 2017 Nanotechnology and Medicine, Create Space Publisher, USA, ISBN 978-1-9796-1501-3, 208 pages.
  2. Mirsayar, M.M., Joneidi, V.A., Petrescu, R.V.V., Petrescu, F.I.T., Berto, F., 2017 Extended MTSN criterion for fracture analysis of soda lime glass, Engineering Fracture Mechanics 178:50–59, ISSN: 0013-7944, http://doi.org/10.1016/j.engfracmech.2017.04.018
  3. Petrescu, Relly Victoria Virgil; Aversa, Raffaella; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 ENERGIA VERDE PARA PROTEGER O MEIO AMBIENTE, Geintec, 7(1):3722-3743. Retrieved from: http://www.revistageintec.net/portal/index.php/revista/article/view/971/747
  4. Aversa, Raffaella; Petrescu, Relly Victoria; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Under Water, OnLine Journal of Biological Sciences, 17(2): 70-87. Retrieved from: http://thescipub.com/abstract/10.3844/ojbsci.2017.70.87
  5. Aversa, Raffaella; Petrescu, Relly Victoria V.; Apicella, Antonio; Petrescu, Florian Ion T.; 2017 Nano-Diamond Hybrid Materials for Structural Biomedical Application, American Journal of Biochemistry and Biotechnology, 13(1): 34-41. http://thescipub.com/abstract/10.3844/ajbbsp.2017.34.41
  6. Syed, Jamaluddin; Dharrab, Ayman Al.; Zafa, Muhammad S.; Khand, Erum; Aversa, Raffaella; Petrescu, Relly Victoria V.; Apicella, Antonio; Petrescu, Florian Ion T.; 2017 Influence of Curing Light Type and Staining Medium on the Discoloring Stability of Dental Restorative Composite, American Journal of Biochemistry and Biotechnology 13(1): 42-50. Retrieved from: http://thescipub.com/abstract/10.3844/ajbbsp.2017.42.50
  7. Aversa, Raffaella; Petrescu, Relly Victoria; Akash, Bilal; Bucinell, Ronald B.; Corchado, Juan M.; Berto, Filippo; Mirsayar, MirMilad; Chen, Guanying; Li, Shuhui; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Kinematics and Forces to a New Model Forging Manipulator, American Journal of Applied Sciences 14(1):60-80. DOI: 10.3844/ajassp.2017.60.80, Retrieved from: http://thescipub.com/abstract/10.3844/ajassp.2017.60.80
  8. Aversa, Raffaella; Petrescu, Relly Victoria; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; Calautit, John Kaiser; Mirsayar, MirMilad; Bucinell, Ronald; Berto, Filippo; Akash, Bilal; 2017 Something about the V Engines Design, American Journal of Applied Sciences 14(1):34-52. DOI: 10.3844/ajassp.2017.34.52, Retrieved from: http://thescipub.com/abstract/10.3844/ajassp.2017.34.52
  9. Aversa, R., Petrescu, RVV., Apicella, A., Petrescu, FIT., 2017 Modern Transportation and Photovoltaic Energy for Urban Ecotourism, Transylvanian Review of Administrative Sciences 13(4):5-20. ISSN Online 2247-8310, ISSN Print 1842-2845 DOI: http://dx.doi.org/10.24193/tras.SI2017
  10. Aversa, Raffaella; Parcesepe, Daniela; Petrescu, Relly Victoria V.; Berto, Filippo; Chen, Guanying; Petrescu, Florian Ion T.; Tamburrino, Francesco; Apicella, Antonio; 2017 Processability of Bulk Metallic Glasses, American Journal of Applied Sciences 14(2): 294-301. DOI: 3844/ajassp.2017.294.301, Retrieved from: http://thescipub.com/abstract/10.3844/ajassp.2017.294.301
  11. Petrescu, Relly Victoria V.; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald B.; Corchado, Juan M.; Berto, Filippo; Mirsayar, MirMilad; Calautit, John Kaiser; Apicella, Antonio; Petrescu, Florian Ion T.; 2017 Yield at Thermal Engines Internal Combustion, American Journal of Engineering and Applied Sciences 10(1): 243-251. http://thescipub.com/abstract/10.3844/ajeassp.2017.243.251
  12. Petrescu, Relly Victoria V.; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald B.; Corchado, Juan M.; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion T.; 2017 Velocities and Accelerations at the 3R Mechatronic Systems, American Journal of Engineering and Applied Sciences 10(1): 252-263. http://thescipub.com/abstract/10.3844/ajeassp.2017.252.263
  13. Berto, Filippo; Gagani, Abedin; Petrescu, Relly Victoria V.; Petrescu, Florian Ion T.; 2017 A Review of the Fatigue Strength of Load Carrying Shear Welded Joints, American Journal of Engineering and Applied Sciences 10(1):1-12. http://thescipub.com/abstract/10.3844/ajeassp.2017.1.12
  14. Petrescu, Relly Victoria V.; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald B.; Corchado, Juan M.; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion T.; 2017 Anthropomorphic Solid Structures n-R Kinematics, American Journal of Engineering and Applied Sciences 10(1): 279-291. http://thescipub.com/abstract/10.3844/ajeassp.2017.279.291
  15. Aversa, Raffaella; Petrescu, Relly Victoria V.; Akash, Bilal; Bucinell, Ronald B.; Corchado, Juan M.; Berto, Filippo; Mirsayar, MirMilad; Chen, Guanying; Li, Shuhui; Apicella, Antonio; Petrescu, Florian Ion T.; 2017 Something about the Balancing of Thermal Motors, American Journal of Engineering and Applied Sciences 10(1):200-217. http://thescipub.com/abstract/10.3844/ajeassp.2017.200.217
  16. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Inverse Kinematics at the Anthropomorphic Robots, by a Trigonometric Method, American Journal of Engineering and Applied Sciences, 10(2): 394-411. http://thescipub.com/abstract/10.3844/ajeassp.2017.394.411
  17. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Calautit, John Kaiser; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Forces at Internal Combustion Engines, American Journal of Engineering and Applied Sciences, 10(2): 382-393. http://thescipub.com/abstract/10.3844/ajeassp.2017.382.393
  18. Petrescu, Relly Victoria V.; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion T.; 2017 Gears-Part I, American Journal of Engineering and Applied Sciences, 10(2): 457-472. http://thescipub.com/abstract/10.3844/ajeassp.2017.457.472
  19. Petrescu, Relly Victoria V.; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion T.; 2017 Gears-Part II, American Journal of Engineering and Applied Sciences, 10(2): 473-483. http://thescipub.com/abstract/10.3844/ajeassp.2017.473.483
  20. Petrescu, Relly Victoria V.; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion T.; 2017 Cam-Gears Forces, Velocities, Powers and Efficiency, American Journal of Engineering and Applied Sciences, 10(2): 491-505. http://thescipub.com/abstract/10.3844/ajeassp.2017.491.505
  21. Aversa, Raffaella; Petrescu, Relly Victoria V.; Apicella, Antonio; Petrescu, Florian Ion T.; 2017 A Dynamic Model for Gears, American Journal of Engineering and Applied Sciences, 10(2): 484-490. http://thescipub.com/abstract/10.3844/ajeassp.2017.484.490
  22. Petrescu, Relly Victoria Virgil; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; kosaitis, Samuel P.; Abu-Lebdeh, Taher M.; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Dynamics of Mechanisms with Cams Illustrated in the Classical Distribution, American Journal of Engineering and Applied Sciences, 10(2): 551-567. http://thescipub.com/abstract/10.3844/ajeassp.2017.551.567
  23. Petrescu, Relly Victoria Virgil; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; kosaitis, Samuel P.; Abu-Lebdeh, Taher M.; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Testing by Non-Destructive Control, American Journal of Engineering and Applied Sciences, 10(2): 568-583. http://thescipub.com/abstract/10.3844/ajeassp.2017.568.583
  24. Petrescu, Relly Victoria Virgil; Aversa, Raffaella; Li, Shuhui; Mirsayar, MirMilad; Bucinell, Ronald; Kosaitis, Samuel P.; Abu-Lebdeh, Taher M.; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Electron Dimensions, American Journal of Engineering and Applied Sciences, 10(2): 584-602. http://thescipub.com/abstract/10.3844/ajeassp.2017.584.602
  25. Petrescu, Relly Victoria Virgil; Aversa, Raffaella; Kozaitis, Samuel; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Deuteron Dimensions, American Journal of Engineering and Applied Sciences, 10(3):649-654. http://thescipub.com/abstract/10.3844/ajeassp.2017.649.654
  26. Petrescu Relly Victoria Virgil; Aversa Raffaella; Apicella Antonio; Petrescu Florian Ion Tiberiu; 2017 Transportation Engineering, American Journal of Engineering and Applied Sciences, 10(3):685-702. http://thescipub.com/abstract/10.3844/ajeassp.2017.685.702
  27. Petrescu Relly Victoria Virgil; Aversa Raffaella; Kozaitis Samuel; Apicella Antonio; Petrescu Florian Ion Tiberiu; 2017 Some Proposed Solutions to Achieve Nuclear Fusion, American Journal of Engineering and Applied Sciences, 10(3):703-708. http://thescipub.com/abstract/10.3844/ajeassp.2017.703.708
  28. Petrescu Relly Victoria Virgil; Aversa Raffaella; Kozaitis Samuel; Apicella Antonio; Petrescu Florian Ion Tiberiu; 2017 Some Basic Reactions in Nuclear Fusion, American Journal of Engineering and Applied Sciences, 10(3):709-716. http://thescipub.com/abstract/10.3844/ajeassp.2017.709.716
  29. Petrescu, Relly Victoria Virgil; Aversa, Raffaella; Kozaitis, Samuel; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 The Quality of Transport and Environmental Protection, Part I, American Journal of Engineering and Applied Sciences, 10(3):738-755. http://thescipub.com/abstract/10.3844/ajeassp.2017.738.755
  30. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Modern Propulsions for Aerospace-A Review, Journal of Aircraft and Spacecraft Technology, 1(1):1-8. http://thescipub.com/abstract/10.3844/jastsp.2017.1.8
  31. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Modern Propulsions for Aerospace-Part II, Journal of Aircraft and Spacecraft Technology, 1(1):9-17. http://thescipub.com/abstract/10.3844/jastsp.2017.9.17
  32. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 History of Aviation-A Short Review, Journal of Aircraft and Spacecraft Technology, 1(1): 30-49. http://thescipub.com/abstract/10.3844/jastsp.2017.30.49
  33. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Lockheed Martin-A Short Review, Journal of Aircraft and Spacecraft Technology, 1(1): 50-68. http://thescipub.com/abstract/10.3844/jastsp.2017.50.68
  34. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Our Universe, Journal of Aircraft and Spacecraft Technology, 1(2): 69-79. http://thescipub.com/abstract/10.3844/jastsp.2017.69.79
  35. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 What is a UFO?, Journal of Aircraft and Spacecraft Technology, 1(2): 80-90. http://thescipub.com/abstract/10.3844/jastsp.2017.80.90
  36. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 About Bell Helicopter FCX-001 Concept Aircraft-A Short Review, Journal of Aircraft and Spacecraft Technology, 1(2): 91-96. http://thescipub.com/abstract/10.3844/jastsp.2017.91.96
  37. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Home at Airbus, Journal of Aircraft and Spacecraft Technology, 1(2): 97-118. http://thescipub.com/abstract/10.3844/jastsp.2017.97.118
  38. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Kozaitis, Samuel; Abu-Lebdeh, Taher; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Airlander, Journal of Aircraft and Spacecraft Technology, 1(2): 119-148. http://thescipub.com/abstract/10.3844/jastsp.2017.119.148
  39. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Corchado, Juan; Berto, Filippo; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 When Boeing is Dreaming – a Review, Journal of Aircraft and Spacecraft Technology, 1(3):149-161. http://thescipub.com/abstract/10.3844/jastsp.2017.149.161
  40. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Corchado, Juan; Berto, Filippo; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 About Northrop Grumman, Journal of Aircraft and Spacecraft Technology, 1(3):162-185. http://thescipub.com/abstract/10.3844/jastsp.2017.162.185
  41. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Corchado, Juan; Berto, Filippo; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Some Special Aircraft, Journal of Aircraft and Spacecraft Technology, 1(3):186-203. http://thescipub.com/abstract/10.3844/jastsp.2017.186.203
  42. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Corchado, Juan; Berto, Filippo; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 About Helicopters, Journal of Aircraft and Spacecraft Technology, 1(3):204-223. http://thescipub.com/abstract/10.3844/jastsp.2017.204.223
  43. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Berto, Filippo; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Forces of a 3R Robot, Journal of Mechatronics and Robotics 1(1):1-14. http://thescipub.com/abstract/10.3844/jmrsp.2017.1.14
  44. Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Berto, Filippo; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017 Direct Geometry and Cinematic to the MP-3R Systems, Journal of Mechatronics and Robotics 1(1):15-23. http://thescipub.com/abstract/10.3844/jmrsp.2017.15.23
  45. Petrescu, RVV., Aversa, R., Akash, B., Berto, F., Apicella, A., Petrescu, FIT., 2017 The Modern Flight, Journal of Aircraft and Spacecraft Technology 1(4):224-233. DOI: 10.3844/jastsp.2017.224.233. Retrieved from: http://thescipub.com/abstract/10.3844/jastsp.2017.224.233
  46. Petrescu, RVV., Aversa, R., Akash, B., Berto, F., Apicella, A., Petrescu, FIT., 2017 Sustainable Energy for Aerospace Vessels, Journal of Aircraft and Spacecraft Technology 1(4):234-240. DOI: 10.3844/jastsp.2017.234.240. Retrieved from: http://thescipub.com/abstract/10.3844/jastsp.2017.234.240
  47. Petrescu, RVV., Aversa, R., Akash, B., Berto, F., Apicella, A., Petrescu, FIT., 2017 Unmanned Helicopters, Journal of Aircraft and Spacecraft Technology 1(4):241-248. DOI: 10.3844/jastsp.2017.241.248. Retrieved from: http://thescipub.com/abstract/10.3844/jastsp.2017.241.248
  48. Petrescu, RVV., Aversa, R., Akash, B., Berto, F., Apicella, A., Petrescu, FIT., 2017 Project HARP, Journal of Aircraft and Spacecraft Technology 1(4):249-257. DOI: 10.3844/jastsp.2017.249.257. Retrieved from: http://thescipub.com/abstract/10.3844/jastsp.2017.249.257
  49. Petrescu, RVV., Aversa, R., Akash, B., Berto, F., Apicella, A., Petrescu, FIT., 2017 Presentation of Romanian Engineers who Contributed to the Development of Global Aeronautics – Part I, Journal of Aircraft and Spacecraft Technology 1(4):258-271. DOI: 10.3844/jastsp.2017.258.271. Retrieved from: http://thescipub.com/abstract/10.3844/jastsp.2017.258.271
  50. Petrescu, RVV., Aversa, R., Akash, B., Berto, F., Apicella, A., Petrescu, FIT., 2017 A First-Class Ticket to the Planet Mars, Please, Journal of Aircraft and Spacecraft Technology 1(4):272-281. DOI: 10.3844/jastsp.2017.272.281. Retrieved from: http://thescipub.com/abstract/10.3844/jastsp.2017.272.281
  51. Petrescu, RVV., Aversa, R., Apicella, A., Abu-Lebdeh, T., Petrescu, FIT., 2017 Nikola TESLA, American Journal of Engineering and Applied Sciences 10(4):868-877. DOI: 10.3844/ajeassp.2017.868.877. Retrieved from: http://thescipub.com/abstract/10.3844/ajeassp.2017.868.877
  52. Petrescu, RVV., Aversa, R., Apicella, A., Mirsayar, MM., Kozaitis, S., Abu-Lebdeh, T., Petrescu, FIT., 2017 Management of Renewable Energies and Environmental Protection, American Journal of Engineering and Applied Sciences 10(4):919-948. DOI: 10.3844/ajeassp.2017.919.948. Retrieved from: http://thescipub.com/abstract/10.3844/ajeassp.2017.919.948
  53. Petrescu, RVV., Aversa, R., Apicella, A., Mirsayar, MM., Kozaitis, S., Abu-Lebdeh, T., Petrescu, FIT., 2017 George (Gogu) Constantinescu, American Journal of Engineering and Applied Sciences 10(4):965-979. DOI: 10.3844/ajeassp.2017.965.979. Retrieved from: http://thescipub.com/abstract/10.3844/ajeassp.2017.965.979
  54. Aversa, R., Petrescu, RVV., Apicella, A., Kozaitis, S., Mirsayar, MM., Abu-Lebdeh, T., Berto, F., Akash, B., Petrescu, FIT., 2017 Triton for Nuclear Fusion, American Journal of Engineering and Applied Sciences 10(4):992-1000. DOI: 10.3844/ajeassp.2017.992.1000. Retrieved from: http://thescipub.com/abstract/10.3844/ajeassp.2017.992.1000

Also From This Author

The Evolution of Modern Flight: A Journey of Comfort, Safety, and Technological Marvels

The Evolution of Modern Flight: A Journey of Comfort, Safety, and Technological Marvels

The modern flight experience is a symphony of comfort, safety, and technological innovation. Today's air travel is not just about reaching a destination; it's about the journey itself. Passengers expect a seamless experience that offers relaxation, entertainment, and peace of mind. The aviation industry has risen to the challenge, transforming the cabin environment and enhancing safety measures to ensure that flying is not only a mode of transportation but a pleasurable experience akin to a vacation. This article delves into the advancements in aircraft design, propulsion systems, and the historical context that have shaped the modern flight experience.
Harnessing Sustainable Energy for Space Exploration

Harnessing Sustainable Energy for Space Exploration

The quest for sustainable energy solutions is propelling the aerospace industry into a new era of space exploration. With advancements in solar technology and electric propulsion, NASA and other space agencies are developing innovative systems capable of powering spacecraft for long-duration missions, including the ambitious goal of sending humans to Mars. This article delves into the latest developments in solar electric propulsion (SEP) and the potential of nuclear fusion as a game-changing energy source for future space travel.
Management of Renewable Energies and Environmental Protection, Part III

Management of Renewable Energies and Environmental Protection, Part III

The purpose of this project is to present an overview of renewable energy sources, major technological developments and case studies, accompanied by applicable examples of the use of sources. Renewable energy is the energy that comes from natural resources: The wind, sunlight, rain, sea waves, tides, geothermal heat, regenerated naturally, automatically. Greenhouse gas emissions pose a serious threat to climate change, with potentially disastrous effects on humanity.