An interesting property of Pascal's Triangle is that the rows are the powers of 11. I have explained exactly where the powers of 11 can be found, including how to interpret rows wit...

An interesting property of Pascal's triangle is that the rows are the powers of 11. I have explained exactly where the powers of 11 can be found, including how to interpret rows with two digit numbers. Later in the article, an informal proof of this surprising property is given, and I have shown how this property of Pascal's triangle can even help you some multiplication sums quicker!

So, firstly, where can the powers of 11 be found in Pascal's triangle? If we look at the first row of Pascal's triangle, it is 1,1. We are going to interpret this as 11. The second row is 1,2,1, which we will call 121, which is 11x11, or 11 squared. Moving down to the third row, we get 1331, which is 11x11x11, or 11 cubed. And from the fourth row, we get 14641, which is 11x11x11x11 or 11^4. This information is summarised in the diagram below:

1 1

1 2 1

1 3 3 1

1 4 6 4 1

11 = 11^1

121 = 11^2

1331 = 11^3

14641 = 11^4

But what do we do from row 5 onwards? Row 5 is 1,5,10,10,5,1, but if you have a calculator, you can check that 11^5 is 161051, not 15101051. The pattern appears to stop working. However, we can in fact apply it to rows 5 and onwards, as we can interpret 1,5,10,10,5,1 as 161051.

Firstly, we need to understand why the pattern appears to have stopped working - then we stand a chance of sorting things out. The reason is that in row 5, we have suddenly got two digits numbers (the 10s). It is easier if we think of the numbers from pascal's triangle fitting into spaces. In row 5, we are squishing two digits into the same space.

to understand how to interpret 1,5,10,10,5,1, we need to think about exactly what we have been doing so far. When we saw 1,2,1, for example we put the first 1 in the hundreds column to mean 100, the two in the tens column to mean 20, and the last 1 in the units column to mean 1. Now we can see that when get a 10 in, for example the hundreds column, this actually means 10x 100 = 1000. In other words, you just treat the ten as "0 carry 1" like when you are doing an addition sum. This is shown for 1,5,10,10,5,1 below:

1 5 0 0 5 1

+.1 1 these 1s have been carried from the 10

= 1 6 1 0 5 1

Amazingly, therefore, we can quickly calculate any power of 11 using Pascal's triangle. This can help occasionally if ever you have to calculate a power of 11 quickly. However, the fun doesn't stop here: by modifying Pascal's triangle, we can quickly calculate any number multiplied by a power of 11. For example, we could calculate 241 x 11^2. All we do is start with 2,4,1 as our first row. As we are trying to multiply by 11^2, we have to calculate a further 2 rows of Pascal's triangle from this initial row. For this, we use the rules of adding the two terms above just like in Pascal's triangle itself. This is shown below:

2,4,1

2,6,5,1

2,8,11,6,1

2 8 1 6 1

... 1

2 9 1 6 1

This is a great way to calculate sums involving multiplying by 11 quickly, so even if you never been good at arithmetic try this out on your friends or family and impress them with your lightning speed calculations!

To show why this works,let's take the number abcd, (where a, b, c and d are each a digit 0 to 9), and multiply it by 11. We can split this multiplication into two bits, as in the diagram below:

abcd x 11=abcd x 10 + abcd x 1

When multiplying a number by 10, you just add a 0 onto the end of it, so abcd x 10 is the same as abcd0. Now, we can add this to abcd x 1:

a b c d 0

+. a b c d

This gives an answer of a(+0) b+a c+b d+c 0+d. This may look unwieldy, but hang on a minute! It is the exactly the same as the sums from Pascal's triangle! You can check this using the next diagram.

... a... b... c... d

(0+)a a+b b+c c+d d(+0)

=a(+0) b+a c+b d+c 0+d

A similar process can be applied for any number of digits. Therefore, we can see why this clever little trick works, although this makes it no less spectacular and is still definitely worth trying out on your friends!

Normal 0 false false false EN-GB X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}- How to Master Python Programming for Image Processing
- Using Microsoft Excel's Variable Declining Balance Depreciation Function
- Understanding UK Mortgage Payment Calculations
- Hawaii Bankruptcy Law $10.00 Astonishing Alternative
- Building Supplies List The Key For Determining Price Of Constructing A Home
- 7 Tips to Setup your Home Business Budget
- Mortgage Calculators
- The Comprehensive Guide to SEO Mastery
- Using the Yield Add-in Functions

- Why Does Mint Make Water Cold?
- What is the Significance of the PMP Certificate?
- Yellow Spotted Lizard: Facts and Insights
- Reasons Education is Important in Life & Why David Bolno Focuses on Giving Back
- The Mastery of Imagery in Edgar Allan Poe's Literature
- Top 10 Safest College Campuses in the US
- The Internet: The Ultimate Resource for Mastering English
- Advantages and disadvantages of grading system
- Enhancing English Language Proficiency: Strategies and Benefits
- The Menard Prison Center Most Famous Criminal Inmates
- Navigating the AIEEE Online Registration: A Step-by-Step Guide
- The Influence of English on Confidence and Authority
- What is the difference between gastronomy and culinary arts
- Does MBA covers points for PR in Australia?
- Exploring the Impact of Sex Education in Schools

- Crafting a Comprehensive Investment Strategy: A Guide to Building Your Financial Future
- RdxHD Live Link: Bollywood, Hollywood Movies Free Download
- Round Bruise with White Center: Types, Causes
- Accessing Your Old SBCGlobal Email Account: A Step-by-Step Guide
- Choosing the Right Engine Oil: 0w20 vs 5w30 Detailed Comparison
- How to Access Your Army Email (Army.mail) account?
- Regaining Access to Your PayPal Account Without Security Questions
- Why Did Walter Kill Walter JR in Breaking Bad?
- Seamless Integration: Connecting Your Blink Camera to Wi-Fi
- Detecting Trouble: How to Deal with Metal Shavings in Transmission Fluid

Pascals Triangle and Cube Numbers

An amazingly wide range of sequences can be found in Pascal's Triangle. In addition to triangle numbers, tetrahedral numbers, fibonacci numbers and square numbers, cube numbers a...Pascals Tetrahedron

An interesting extension of the ideas from Pascal's triangle can be found in Pascal's tetrahedron, a three-dimensional version of Pascal's triangle. In this article, I explain how Pasc...Properties of Pascals Pyramid

Pascal's Pyramid, or Pascal's tetrahedron is an interesting extension of the ideas from Pascal's Triangle. In this article, I take some of the basic properties of Pascal's triangle...