NACA and NASA, Part I

  • Share this article on Facebook
  • Share this article on Twitter
  • Share this article on Linkedin

Authors: Relly Victoria Virgil Petrescu and Florian Ion Tiberiu Petrescu

mediaimage

The National Advisory Committee for Aeronautics (NACA) was a U.S. federal agency founded on March 3,NACA and NASA, Part I Articles 1915 to undertake, promote, and institutionalize aeronautical research. On October 1, 1958 the agency was dissolved, and its assets and personnel transferred to the newly created National Aeronautics and Space Administration (NASA). NACA was pronounced as individual letters, rather than as an acronym.

NACA research and development produced the NACA duct, a type of air intake used in modern automotive applications, the NACA cowling and several series of NACA airfoils which are still used in aircraft manufacturing.

NACA began as an emergency measure during World War I to promote industry/academic/government coordination on war-related projects. It was modeled on similar national agencies found in Europe. Such agencies were the French “L’Etablissement Central de l’Aérostation Militaire” in Meudon (now Office National d'Etudes et de Recherches Aerospatiales), the German “Aerodynamical Laboratory of the University of Göttingen” and the Russian “Aerodynamic Institute of Koutchino”. However, the most influential agency upon which the NACA was based was the British “Advisory Committee for Aeronautics”.

In December 1912, President William Howard Taft had appointed a National Aerodynamical Laboratory Commission chaired by Robert S. Woodward, president of the Carnegie Institution of Washington. Legislation was introduced in both houses of Congress early in January 1913 to approve the commission, but when it came to a vote, the legislation was defeated.

Charles D. Walcott – secretary of the Smithsonian Institution from 1907 to 1927 – took up the effort, and in January 1915, Senator Benjamin R. Tillman, and House Representative Ernest W. Roberts, introduced identical resolutions recommending the creation of an advisory committee as outlined by Walcott. The purpose of the committee was "to supervise and direct the scientific study of the problems of flight with a view to their practical solution, and to determine the problems which should be experimentally attacked and to discuss their solution and their application to practical questions." Assistant Secretary of the Navy Franklin D. Roosevelt wrote that he "heartily the principle" on which the legislation was based. Walcott then suggested the tactic of adding the resolution to the Naval Appropriations Bill.

According to one source, "The enabling legislation for the NACA slipped through almost unnoticed as a rider attached to the Naval Appropriation Bill, on 3 March 1915." The committee of 12 people, all unpaid, were allocated a budget of $5,000 per year.

President Woodrow Wilson signed it into law the same day, thus formally creating the Advisory Committee for Aeronautics, as it was called in the legislation, on the last day of the 63rd Congress.

The act of Congress creating NACA, approved March 3, 1915, reads, "...It shall be the duty of the advisory committee for aeronautics to supervise and direct the scientific study of the problems of flight with a view to their practical solution.

On January 29, 1920, President Wilson appointed pioneering flier and aviation engineer Orville Wright to NACA's board. By the early 1920s, it had adopted a new and more ambitious mission: to promote military and civilian aviation through applied research that looked beyond current needs. NACA researchers pursued this mission through the agency's impressive collection of in-house wind tunnels, engine test stands, and flight test facilities. Commercial and military clients were also permitted to use NACA facilities on a contract basis.

In 1922, NACA had 100 employees. By 1938, it had 426. In addition to formal assignments, staff were encouraged to pursue unauthorized "bootleg" research, provided that it was not too exotic. The result was a long string of fundamental breakthroughs, including "NACA engine cowl" (1930s), the "NACA airfoil" series (1940s), and the "area rule" for supersonic aircraft (1950s). On the other hand, NACA's 1941 refusal to increase airspeed in their wind tunnels set Lockheed back a year in their quest to solve the problem of compressibility in the P-38. The full-size 30-by-60-foot (9.1 × 18 m) Langley wind tunnel operated at no more than 100 miles per hour (160 km/h) and the recent 7-by-10-foot (2.1 × 3.0 m) tunnels at Moffett could only reach 250 mph (400 km/h). These were speeds Lockheed engineers considered useless for their purposes. Gen. 'Hap' Arnold took up the matter and overruled NACA objections to higher air speeds. NACA built a handful of new high-speed wind tunnels, and Mach 0.75 (570 mph, 920 km/h) was reached at Moffett's 16-foot (4.9 m) wind tunnel late in 1942.

NACA claims credit for having the first aircraft to break the sound barrier (although the aircraft, the Bell X-1, was controlled by the Air Force and flew with an Air Force pilot when it broke the sound barrier).

They also claim credit for the first aircraft (X-15) that eventually flew to the "edge of space". NACA airfoils are still used on modern aircraft, up to the state of the art F-22 Raptor jet fighter.

On September 30, 1946, five NACA engineers, headed by Walter C. Williams, arrived at Muroc Army Airfield (now Edwards AFB) from Langley Aeronautical Laboratory, VA, to prepare for X-1 supersonic research flights in joint NACA-Army Air Forces program.

In 1951, Richard Whitcomb determined the transonic area rule that explained the physical rationale for transonic flow over an aircraft. This concept is now used in designing all transonic and supersonic aircraft.

The NACA experience provided a powerful model for World War II research, the postwar government laboratories, and NACA's successor: the National Aeronautics and Space Administration.

On 21 November 1957, Hugh Dryden, NACA’s director, established the Special Committee on Space Technology.

The committee, also called the Stever Committee after its chairman, Guyford Stever, was a special steering committee that was formed with the mandate to coordinate various branches of the Federal government, private companies as well as universities within the United States with NACA's objectives and also harness their expertise in order to develop a space program.

Remarkably, Hendrik Wade Bode, the man who helped develop automatic radar-controlled artillery that brought down the Nazi V-1 flying bombs over London during World War II, was actually serving in the same committee and sitting at the same table as Wernher von Braun who was head of the team which developed the V-2, the other weapon that terrorized London.

After the Soviet space program's launch of the world's first artificial satellite (Sputnik 1) on October 4, 1957, the attention of the United States turned toward its own fledgling space efforts.

The U.S. Congress, alarmed by the perceived threat to national security and technological leadership (known as the "Sputnik crisis"), urged immediate and swift action; President Dwight D. Eisenhower and his advisers counseled more deliberate measures. Several months of debate produced an agreement that a new federal agency was needed to conduct all non-military activity in space.

The Advanced Research Projects Agency (ARPA) was also created at this time to develop space technology for military application.

On January 14, 1958, Dryden published "A National Research Program for Space Technology," which stated:

“It is of great urgency and importance to our country both from consideration of our prestige as a nation as well as military necessity that this challenge (Sputnik) be met by an energetic program of research and development for the conquest of space....

It is accordingly proposed that the scientific research be the responsibility of a national civilian agency working in close cooperation with the applied research and development groups required for weapon systems development by the military. The pattern to be followed is that already developed by the NACA and the military services....

The NACA is capable, by rapid extension and expansion of its effort, of providing leadership in space technology.”

Launched on January 31, 1958, Explorer 1, officially Satellite 1958 Alpha, became the U.S.'s first earth satellite. The Explorer 1 payload consisted of the Iowa Cosmic Ray Instrument without a tape data recorder which was not modified in time to make it onto the satellite.

On March 5, 1958, James Killian, who chaired the President's Science Advisory Committee, wrote a memorandum to the President Dwight D. Eisenhower. Titled, "Organization for Civil Space Programs," it encouraged the President to sanction the creation of NASA. He wrote that a civil space program should be based on a "strengthened and redesignated" NACA, indicating that NACA was a "going Federal research agency" with 7,500 employees and $300 million worth of facilities, which could expand its research program "with a minimum of delay."

 

On March 5, PSAC Chairman James Killian wrote a memorandum to President Eisenhower, entitled "Organization for Civil Space Programs", encouraging the creation of a civil space program based upon a "strengthened and redesignated" NACA which could expand its research program "with a minimum of delay." In late March, a NACA report entitled "Suggestions for a Space Program" included recommendations for subsequently developing a hydrogen fluorine fueled rocket of 4,450,000 newtons (1,000,000 lbf) thrust designed with second and third stages.

 

In April 1958, Eisenhower delivered to the U.S. Congress an executive address favoring a national civilian space agency and submitted a bill to create a "National Aeronautical and Space Agency." NACA's former role of research alone would change to include large-scale development, management, and operations.

The U.S. Congress passed the bill, somewhat reworded, as the National Aeronautics and Space Act of 1958, on July 16.

Only two days later von Braun's Working Group submitted a preliminary report severely criticizing the duplication of efforts and lack of coordination among various organizations assigned to the United States' space programs. Stever's Committee on Space Technology concurred with the criticisms of the von Braun Group (a final draft was published several months later, in October).

With the creation of NASA in 1958, the NACA was abolished, and its research centers – Ames Research Center, Lewis Research Center, and Langley Aeronautical Laboratory – were incorporated within the new space and aeronautics agency along with some elements of the U.S. Army and U.S. Navy. In 1967, Congress directed NASA to form an Aerospace Safety Advisory Panel (ASAP) to advise the NASA Administrator on safety issues and hazards in NASA's aerospace programs. In addition, there were the Space Program Advisory Council and the Research and Technology Advisory Council.

In 1977, these were all combined to form the NASA Advisory Council (NAC) which is the successor to the National Advisory Committee for Aeronautics.

The National Aeronautics and Space Administration (NASA) is an executive branch agency of the United States government, responsible for the nation's civilian space program and aeronautics and aerospace research. Since February 2006, NASA's self-described mission statement is to "pioneer the future in space exploration, scientific discovery and aeronautics research."

NASA has led U.S. efforts for space exploration since, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle.

Currently, NASA is supporting the International Space Station and has been developing the manned Orion spacecraft. NASA is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches.

NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate's Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories and associated programs.

NASA shares data with various national and international organizations such as from the Greenhouse Gases Observing Satellite.

 

 

Project Mercury

 

Conducted under the pressure of the competition between the U.S. and the Soviet Union that existed during the Cold War, Project Mercury was initiated in 1958 and started NASA down the path of human space exploration with missions designed to discover if man could survive in space.

Representatives from the U.S. Army, Navy, and Air Force were selected to provide assistance to NASA. Pilot selections were facilitated through coordination with U.S. defense research, contracting, and military test pilot programs.

On May 5, 1961, astronaut Alan Shepard became the first American in space when he piloted Freedom 7 on a 15-minute suborbital flight.

John Glenn became the first American to orbit the Earth on February 20, 1962 during the flight of Friendship 7. Three more orbital flights followed.

Project Mercury was the first human spaceflight program of the United States. It ran from 1959 through 1963 with the goal of putting a human in orbit around the Earth. The Mercury-Atlas 6 flight on February 20, 1962, was the first American flight to achieve this goal.

The program included 20 unmanned launches, followed by two suborbital and four orbital flights with astronaut pilots.

Early planning and research were carried out by the National Advisory Committee for Aeronautics, but the program was officially conducted by its successor organization, NASA.

Mercury laid the groundwork for Project Gemini and the follow-on Apollo moon-landing program.

The project name came from Mercury, a Roman mythological god often seen as a symbol of speed.

Mercury is also the name of the innermost planet of the Solar System, which moves faster than any other and hence provides an image of speed, although Project Mercury had no real connection to the planet.

The Mercury program cost approximately $384 million, the equivalent of about $2.9 billion in 2010 dollars.

The goals of the program were to orbit a manned spacecraft around Earth, investigate the pilot's ability to function in space and to recover both pilot and spacecraft safely.

NASA also established program guidelines: existing technology and off-the-shelf equipment should be used wherever practical, the simplest and most reliable approach to system design would be followed, an existing launch vehicle would be employed to place the spacecraft into orbit, and use of a progressive and logical test program.

Project requirements for the spacecraft were that it must be fitted with a reliable launch escape system to separate the spacecraft and its crewman from the launch vehicle in case of impending failure, the pilot must be given the capability of manually controlling spacecraft attitude, the spacecraft must carry a retrorocket system capable of reliably providing the necessary impulse to bring the spacecraft out of orbit, a zero-lift body utilizing drag braking would be used for reentry, and that the spacecraft design must satisfy the requirements for a water landing.

On October 7, 1958, T. Keith Glennan, the first administrator of NASA, approved the Mercury project. On December 17 Glennan announced Project Mercury publicly.

On December 29, 1958 North American Aviation was awarded a contract to design and build Little Joe boosters for Mercury launch escape system test flights.

In January 1959 McDonnell Aircraft Corporation was chosen to be prime contractor for the Mercury spacecraft, and the contract for 12 spacecraft was awarded in February.

In April seven astronauts, known as the Mercury Seven or more formally as Astronaut Group 1, were selected to participate in the Mercury program.

In May 1959 North American Aviation delivered the first two Little Joe boosters, and in June the Big Joe booster was delivered.

In July the planned use of Jupiter boosters was canceled in favor of Redstone boosters for suborbital flights.

In October General Electric delivered to McDonnell the ablative heat shield designated for installation on the first Mercury spacecraft.

In December the launch vehicle for Mercury-Redstone 1 was ready to begin static tests installed on a test stand at ABMA.

In January 1960 NASA awarded Western Electric Company a contract for the Mercury tracking network. The value of the contract was over $33 million. Also in January, McDonnell delivered the first production-type Mercury spacecraft, less than a year after award of the formal contract.

On February 12, Christopher C. Kraft, Jr. was appointed to head the Mercury operations coordination group.

Kraft was asked to, "come up with a basic mission plan. You know, the bottom-line stuff on how we fly a man from a launch pad into space and back again. It would be good if you kept him alive."

In April, the first spacecraft was delivered to Wallops Island for the beach-abort test. The test was completed successfully on May 9.

Because of their small size, it was said that the Mercury spacecraft were worn, not ridden. With 1.7 m³ of habitable volume, the spacecraft was just large enough for the single crew member. Inside were 120 controls: 55 electrical switches, 30 fuses and 35 mechanical levers. The spacecraft was designed by Max Faget and NASA's Space Task Group.

Despite the astronauts' test pilot experience NASA at first envisioned them as "minor participants" during their flights, causing many conflicts between the astronauts and engineers during the spacecraft's design. Nonetheless, contrary to other reports, the project's leaders always intended for pilots to be able to control their spacecraft, as they valued humans' ability to contribute to missions' success. John Glenn's manual attitude adjustments during the first orbital flight were an example of the value of such control. The astronauts requested—and received—a larger window and manual reentry controls.

During the launch phase of the mission, the Mercury spacecraft and astronaut were protected from launch vehicle failures by the Launch Escape System. The LES consisted of a solid fuel, 52,000 lbf (231 kN) thrust rocket with three engine bells mounted on a tower above the spacecraft. In the event of a launch abort, the LES would fire for one second, pulling the spacecraft and astronaut away from the booster and a possible explosion. The spacecraft would then descend on its parachute recovery system. After booster engine cutoff (BECO), the LES was no longer needed and was separated from the spacecraft by a solid fuel, 800 lbf (3.6 kN) thrust jettison rocket that fired for 1.5 seconds.

 

After a successful liftoff, the spacecraft fired three small clustered solid-fuel, 400 lbf (1.8 kN) thrust rockets for 1 second to separate the spacecraft from the launch vehicle. These rockets were called the posigrade rockets.

The spacecraft were only equipped with attitude control thrusters; after orbit insertion but before retrofire they could not change their orbit. There were three sets of high and low powered automatic control jets and separate manual jets, one for each axis (yaw, pitch, and roll), and supplied from two separate fuel tanks, one automatic and one manual. The pilot could use any one of the three thruster systems and fuel them from either of the two fuel tanks to provide spacecraft attitude control. The Mercury spacecraft was designed to be completely controllable from the ground in the event that something impaired the pilot's ability to function.

The spacecraft had three solid-fuel, 1000 lbf (4.5 kN) thrust retrorockets that fired for 10 seconds each. One was sufficient to return the spacecraft to Earth if the other two failed. The firing sequence (known as ripple firing) required firing the first retro, followed by the second retro five seconds later (while the first was still firing). Five seconds after that, the third retro fired (while the second retro was still firing).

There was a small hinged metal flap at the nose of the spacecraft called the spoiler. If the spacecraft started to reenter nose first (another stable reentry attitude for the spacecraft), airflow over the spoiler would flip the spacecraft around to the proper, heatshield-first reentry attitude, a technique called shuttlecocking. During reentry, the astronaut would experience about 8 g-forces on an orbital mission, and 11–12 gs on a suborbital mission.

Initial designs for the spacecraft suggested the use of either beryllium heat-sink heat shields or an ablative shield. Extensive testing settled the issue – ablative shields proved to be reliable (so much so that the initial shield thickness was safely reduced, allowing a lower total spacecraft weight), and were easier to produce — at that time, beryllium was only produced in sufficient quantities by a single company in the U.S. — and cheaper.

NASA ordered 20 production spacecraft, numbered 1 through 20, from McDonnell Aircraft Company, St. Louis, Missouri. Five of the 20, Nos. 10, 12, 15, 17, and 19, were not flown. Spacecraft No. 3 and No. 4 were destroyed during unmanned test flights. Spacecraft No. 11 sank and was recovered from the bottom of the Atlantic Ocean after 38 years. Some spacecraft were modified after initial production (refurbished after launch abort, modified for longer missions, etc.) and received a letter designation after their number, examples 2B, 15B. Some spacecraft were modified twice; for example, spacecraft 15 became 15A and then 15B.

A number of Mercury Boilerplate spacecraft (including mockup/prototype/replica spacecraft, made from non-flight materials or lacking production spacecraft systems and/or hardware) were also made by NASA and McDonnell Aircraft. They were designed and used to test spacecraft recovery systems, and escape tower and rocket motors. Formal tests were done on test pad at Langley and at Wallops Island using the Little Joe and Big Joe rockets.

Little Joe and a Mercury boilerplate were used to test the escape tower and abort procedures.

Redstone was used for suborbital flights, and Atlas for orbital ones.

Starting in October, 1958, Jupiter missiles were also considered as suborbital launch vehicles for the Mercury program, but were cut from the program in July 1959 due to budget constraints. The Atlas boosters required extra strengthening in order to handle the increased weight of the Mercury spacecraft beyond that of the nuclear warheads they were designed to carry. Little Joe was a solid-propellant booster designed specially for the Mercury program. The Titan missile was also considered for use for later Mercury missions; however, the Mercury program was terminated before these missions were flown. The Titan was used for the Gemini program which followed Mercury.

The Mercury program used a Scout booster for a single flight, Mercury-Scout 1, which was intended to launch a small satellite designed to evaluate the worldwide Mercury Tracking Network. Launched on November 1, 1961, the rocket was destroyed by the Range Safety Officer after 44 seconds of flight.

            The program (controlled from Cape Canaveral, Florida) included 20 robotic launches. Not all of these were intended to reach space and not all were successful in completing their objectives. Four of these flights included non-human primates, starting with the fifth flight (1959) which launched a Rhesus macaque named Sam (after the Air Force's School of Aerospace Medicine). The Mercury program's complete roster of non-human space-farers is given below.

Sam, a Rhesus macaque, launched 4 December 1959 on Little Joe 2 to 85 km altitude. Miss Sam, a Rhesus macaque, launched 21 January 1960 on Little Joe 1B to 15 km altitude. Ham, a chimpanzee, launched 31 January 1961 on Mercury-Redstone 2 for a suborbital flight. Enos, a chimpanzee, launched 29 November 1961 on Mercury-Atlas 5 for a 2-orbit flight.

 

Project Gemini

 

            Project Gemini focused on conducting experiments and developing and practicing techniques required for lunar missions.

The first Gemini flight with astronauts on board, Gemini 3, was flown by Gus Grissom and John Young on March 23, 1965. Nine missions followed, showing that long-duration human space flight and rendezvous and docking with another vehicle in space were possible, and gathering medical data on the effects of weightlessness on humans.

Gemini missions included the first American spacewalks, and new orbital maneuvers including rendezvous and docking.

            Project Gemini was the second human spaceflight program of NASA, the civilian space agency of the United States government. Project Gemini was conducted between Projects Mercury and Apollo, with ten manned flights occurring in 1965 and 1966.

Its objective was to develop techniques for advanced space travel, notably those necessary for Apollo, whose objective was to land humans on the Moon.

Gemini missions included missions long enough for a trip to the Moon and back, the first American spacewalks, and new orbital maneuvers including rendezvous and docking.

All manned Gemini flights were launched from Cape Canaveral, Florida atop Titan II GLV boosters.

After the existing Apollo program was chartered by President John F. Kennedy on May 25, 1961 to land men on the Moon, it became evident to NASA officials that a follow-on to the Mercury program was required to develop certain spaceflight capabilities in support of Apollo.

Originally introduced on December 7 as Mercury Mark II, it was re-christened Project Gemini on January 3, 1962, from the fact that the spacecraft would hold two crewmen, seated abreast, as gemini in Latin means "twins" or "side-by-side". Gemini is also the name of the third constellation of the Zodiac and its twin stars, Castor and Pollux.

 

The major objectives were:

    To demonstrate endurance of humans and equipment to spaceflight for extended periods, at least eight days required for a Moon landing, to a maximum of two weeks.

    To effect rendezvous and docking with another vehicle, and to maneuver the combined spacecraft using the propulsion system of the target vehicle.

    To demonstrate Extra-Vehicular Activity (EVA), or space-"walks" outside the protection of the spacecraft, and to evaluate the astronauts' ability to perform tasks there.

    To perfect techniques of atmospheric reentry and landing at a pre-selected location.

    To provide the astronauts with zero-gravity, rendezvous, and docking experience required for Apollo.

NASA selected McDonnell Aircraft, which had been the prime contractor for the Project Mercury capsule, to build the Gemini capsule in 1961 and the first capsule was delivered in 1963. The spacecraft was 19 feet long and 10 feet wide with a launch weight of 8,490 pounds. The Gemini capsule first flew with a crew on March 23, 1965.

Gemini was the first manned spacecraft to include an onboard computer, the Gemini Guidance Computer, to facilitate management and control of mission maneuvers. Unlike the Mercury, it used ejection seats, in-flight radar and an artificial horizon—devices borrowed from the aviation industry.

A major difference between the Gemini and Mercury spacecraft was that Mercury had all systems other than the reentry rockets situated within the capsule, most of which were accessed through the astronaut's hatchway. In contrast, Gemini housed power, propulsion, and life support systems in a detachable Equipment Module located behind the Reentry Module, which made it similar to the Apollo Command/Service Module design. Many components in the capsule itself were reachable through their own small access doors.

The original intention was for Gemini to land on solid ground instead of at sea, using a Rogallo wing paraglider rather than a parachute, with the crew seated upright controlling the forward motion of the craft.

To facilitate this, the paraglider did not attach just to the nose of the craft, but to an additional attachment point for balance near the heat shield.

This cord was covered by a strip of metal which ran between the twin hatches.

However, this design was ultimately dropped, and parachutes were used to make a sea landing as in Project Mercury. However, the capsule was suspended at an angle closer to horizontal, so that a side of the heat shield contacted the water first. This eliminated the need for the landing bag cushion used in the Mercury capsule.

Early short-duration missions had their electrical power supplied by batteries; later endurance missions used the first fuel cells in manned spacecraft.

Unlike Mercury, which could only change its orientation in space, the Gemini spacecraft could translate in all six directions, and alter its orbit.

It was designed to dock with the Agena Target Vehicle, which had its own large rocket engine which was used to perform large orbital changes.

The Gemini program cost $5.4 billion.

Gemini was designed by a Canadian, Jim Chamberlin, formerly the chief aerodynamicist on the Avro Arrow fighter interceptor program with Avro Canada.

Chamberlin joined NASA along with 25 senior Avro engineers after cancellation of the Arrow program, and became head of the U.S. Space Task Group’s engineering division in charge of Gemini. The prime contractor was McDonnell Aircraft, which had also been the prime contractor for the Project Mercury capsule.

In addition, astronaut Gus Grissom was heavily involved in the development and design of the Gemini spacecraft. He writes in his posthumous 1968 book Gemini that the realization of Project Mercury's end and the unlikelihood of his having another flight in that program prompted him to focus all of his efforts on the upcoming Gemini Program.

The Gemini program was managed by the Manned Spacecraft Center, Houston, Texas, under direction of the Office of Manned Space Flight, NASA Headquarters, Washington, D.C, Dr. George E. Mueller, Associate Administrator of NASA for Manned Space Flight, served as acting director of the Gemini program. William C. Schneider, Deputy Director of Manned Space Flight for Mission Operations, served as mission director on all Gemini flights beginning with Gemini VI.

Guenther Wendt was a McDonnell engineer who supervised launch preparations for both the Mercury and Gemini programs. His team was responsible for completion of the complex pad close-out procedures just prior to spacecraft launch, and he personally closed the hatches before flight.

The astronauts appreciated his taking absolute authority over, and responsibility for, the condition of the spacecraft and developed a good-humored rapport with him.

Deke Slayton, as head of the Astronaut Office, had the main role in the choice of crews for the Gemini program.

With Gemini it became a procedure that each flight had a primary crew and backup crew, and that the backup crew would rotate to primary crew status three flights later.

Slayton also intended for first choice of mission commands to be given to the four remaining active astronauts of the Mercury Seven: Alan Shepard, Grissom, Cooper, and Schirra. (John Glenn had retired from NASA in January 1964 and Scott Carpenter, who was blamed by some in NASA management for the problematic reentry of Aurora 7, was on leave to participate in the Navy's SEALAB project and was grounded from flight in July 1964 due to an arm injury sustained in a motorbike accident. Slayton himself continued to be grounded due to a heart problem.)

In late 1963, Slayton selected Shepard and Stafford for Gemini 3, McDivitt and White for Gemini 4, and Schirra and Young for Gemini 5 (which was to be the first Agena rendezvous mission). Backup crew for Gemini 3 was Grissom and Borman, who were also slated for Gemini 6, to be the first long-duration mission.

Finally Conrad and Lovell were assigned as backup crew for Gemini 4.

Delays in the production of the Agena Target Vehicle caused the first rearrangement of the crew rotation.

The Schirra and Young mission was bumped to Gemini 6 and they now were the backup crew for Shepard and Stafford.

Grissom and Borman now had their long-duration mission assigned to Gemini 5.

The second rearrangement occurred when Shepard developed Ménière's disease, an inner ear problem.

Grissom was then moved to command Gemini 3.

Slayton felt that Young was a better personality match with Grissom and switched Stafford and Young.

Finally, Slayton tapped Cooper to command the long-duration Gemini 5.

Again for reasons of compatibility, he moved Conrad from backup commander of Gemini 4 to pilot of Gemini 5, and Borman to backup command of Gemini 4.

Finally he assigned Armstrong and Elliot See to be the backup crew for Gemini 5.

The third rearrangement of crew assignment occurred when Slayton felt that See wasn't up to the physical demands of EVA on Gemini 8.

He reassigned See to be the prime commander of Gemini 9 and put Scott as pilot of Gemini 8 and Charles Bassett as the pilot of Gemini 9.

The fourth and final rearrangement of the Gemini crew assignment occurred after the deaths of See and Bassett when their trainer jet crashed, ironically into a McDonnell building which held their Gemini 9 capsule in St. Louis.

The backup crew of Stafford and Cernan was then moved up to the new prime crew of the re-designated Gemini 9A.

Lovell and Aldrin were moved from being the backup crew of Gemini 10 to be the backup crew of Gemini 9.

This cleared the way through the crew rotation for Lovell and Aldrin to become the prime crew of Gemini 12.

Along with the deaths of Grissom, White, and Roger Chaffee in the fire of Apollo 1, this final arrangement helped determine the makeup of the first seven Apollo crews, and who would be in position for a chance to be the first to walk on the Moon.

In his autobiography Deke Slayton relates that he would probably have replaced Aldrin with Cernan, the backup pilot for Gemini 12, on Apollo 11 if the second use of the Astronaut Maneuvering Unit (AMU) had been on Gemini 12. (The first use was by Cernan on Gemini IX-A.) Cernan makes a similar claim in his autobiography.

The Gemini-Titan launch vehicles, like the Mercury-Atlas vehicles before them, were ordered by NASA through the U. S. Air Force and were in reality missiles. The Gemini-Titan II rockets were assigned U.S. Air Force serial numbers, which were painted in four places on each Titan II (on opposite sides on each of the first and second stages). U.S. Air Force crews maintained Launch Complex 19 and prepared and launched all of the Gemini-Titan II launch vehicles.

 

The USAF serial numbers assigned to the Gemini-Titan launch vehicles are given in the tables above. Fifteen Titan IIs were ordered in 1962 so the serial is "62-12XXX", but only "12XXX" is painted on the Titan II. The order for the last three of the 15 launch vehicles was cancelled on July 30, 1964, and they were never built. Serial numbers were, however, assigned to them prospectively: 12568 - GLV-13; 12569 - GLV-14; and 12570 - GLV-15.

Apollo program

The Apollo program was the United States spaceflight effort which landed the first humans on Earth's Moon.

Conceived during the Eisenhower administration and conducted by the National Aeronautics and Space Administration (NASA), Apollo began in earnest after President John F. Kennedy's 1961 address to Congress declaring his belief in a national goal of "landing a man on the Moon" by the end of the decade in a competition with the Soviet Union for supremacy in space.

This goal was first accomplished during the Apollo 11 mission on July 20, 1969 when astronauts Neil Armstrong and Buzz Aldrin landed, while Michael Collins remained in lunar orbit. Five subsequent Apollo missions also landed astronauts on the Moon, the last in December 1972. In these six Apollo spaceflights, 12 men walked on the Moon. These are the only times humans have landed on another celestial body.

After Armstrong served as backup commander for Apollo 8, Slayton offered him the post of commander of Apollo 11 on December 23, 1968, as 8 orbited the Moon.

In a meeting that was not made public until the publication of Armstrong's biography in 2005, Slayton told him that although the planned crew was Armstrong as commander, lunar module pilot Buzz Aldrin and command module pilot Michael Collins, he was offering the chance to replace Aldrin with Jim Lovell.

After thinking it over for a day, Armstrong told Slayton he would stick with Aldrin, as he had no difficulty working with him and thought Lovell deserved his own command.

Replacing Aldrin with Lovell would have made Lovell the Lunar Module Pilot, unofficially the lowest ranked member, and Armstrong could not justify placing Lovell, the commander of Gemini 12, in the number 3 position of the crew.

A March 1969 meeting between Slayton, George Low, Bob Gilruth, and Chris Kraft determined that Armstrong would be the first person on the Moon, in some part because NASA management saw Armstrong as a person who did not have a large ego.

A press conference held on April 14, 1969 gave the design of the LM cabin as the reason for Armstrong being first; the hatch opened inwards and to the right, making it difficult for the lunar module pilot, on the right-hand side, to egress first.

Slayton added, "Secondly, just on a pure protocol basis, I figured the commander ought to be the first guy out. I changed it as soon as I found they had the time line that showed that. Bob Gilruth approved my decision." At the time of their meeting, the four men did not know about the hatch issue.

 

 

References

Aversa, R., R.V.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2017a. Nano-diamond hybrid materials for structural biomedical application. Am. J. Biochem. Biotechnol.

Aversa, R., R.V. Petrescu, B. Akash, R.B. Bucinell and J.M. Corchado et al., 2017b. Kinematics and forces to a new model forging manipulator. Am. J. Applied Sci., 14: 60-80.

Aversa, R., R.V. Petrescu, A. Apicella, I.T.F. Petrescu and J.K. Calautit et al., 2017c. Something about the V engines design. Am. J. Applied Sci., 14: 34-52.

Aversa, R., D. Parcesepe, R.V.V. Petrescu, F. Berto and G. Chen et al., 2017d. Process ability of bulk metallic glasses. Am. J. Applied Sci., 14: 294-301.

Aversa, R., R.V.V. Petrescu, B. Akash, R.B. Bucinell and J.M. Corchado et al., 2017e. Something about the balancing of thermal motors. Am. J. Eng. Applied Sci., 10: 200.217. DOI: 10.3844/ajeassp.2017.200.217

Aversa, R., F.I.T. Petrescu, R.V. Petrescu and A. Apicella, 2016a. Biomimetic FEA bone modeling for customized hybrid biological prostheses development. Am. J. Applied Sci., 13: 1060-1067. DOI: 10.3844/ajassp.2016.1060.1067

Aversa, R., D. Parcesepe, R.V. Petrescu, G. Chen and F.I.T. Petrescu et al., 2016b. Glassy amorphous metal injection molded induced morphological defects. Am. J. Applied Sci., 13: 1476-1482.

Aversa, R., R.V. Petrescu, F.I.T. Petrescu and A. Apicella, 2016c. Smart-factory: Optimization and process control of composite centrifuged pipes. Am. J. Applied Sci., 13: 1330-1341.

Aversa, R., F. Tamburrino, R.V. Petrescu, F.I.T. Petrescu and M. Artur et al., 2016d. Biomechanically inspired shape memory effect machines driven by muscle like acting NiTi alloys. Am. J. Applied Sci., 13: 1264-1271.

Aversa, R., E.M. Buzea, R.V. Petrescu, A. Apicella and M. Neacsa et al., 2016e. Present a mechatronic system having able to determine the concentration of carotenoids. Am. J. Eng. Applied Sci., 9: 1106-1111.

Aversa, R., R.V. Petrescu, R. Sorrentino, F.I.T. Petrescu and A. Apicella, 2016f. Hybrid ceramo-polymeric nanocomposite for biomimetic scaffolds design and preparation. Am. J. Eng. Applied Sci., 9: 1096-1105.

Aversa, R., V. Perrotta, R.V. Petrescu, C. Misiano and F.I.T. Petrescu et al., 2016g. From structural colors to super-hydrophobicity and achromatic transparent protective coatings: Ion plating plasma assisted TiO2 and SiO2 Nano-film deposition. Am. J. Eng. Applied Sci., 9: 1037-1045.

Aversa, R., R.V. Petrescu, F.I.T. Petrescu and A. Apicella, 2016h Biomimetic and Evolutionary Design Driven Innovation in Sustainable Products Development, Am. J. Eng. Applied Sci., 9: 1027-1036.

Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2016i. Mitochondria are naturally micro robots-a review. Am. J. Eng. Applied Sci., 9: 991-1002.

Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2016j. We are addicted to vitamins C and E-A review. Am. J. Eng. Applied Sci., 9: 1003-1018.

Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2016k. Physiologic human fluids and swelling behavior of hydrophilic biocompatible hybrid ceramo-polymeric materials. Am. J. Eng. Applied Sci., 9: 962-972.

Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2016l. One can slow down the aging through antioxidants. Am. J. Eng. Applied Sci., 9: 1112-1126.

Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2016m. About homeopathy or jSimilia similibus curenturk. Am. J. Eng. Applied Sci., 9: 1164-1172.

Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2016n. The basic elements of life's. Am. J. Eng. Applied Sci., 9: 1189-1197.

Aversa, R., F.I.T. Petrescu, R.V. Petrescu and A. Apicella, 2016o. Flexible stem trabecular prostheses. Am. J. Eng. Applied Sci., 9: 1213-1221.

Mirsayar, M.M., V.A. Joneidi, R.V.V. Petrescu,    F.I.T. Petrescu and F. Berto, 2017 Extended MTSN criterion for fracture analysis of soda lime glass. Eng. Fracture Mechanics 178: 50-59.     DOI: 10.1016/j.engfracmech.2017.04.018

Petrescu, R.V. and F.I. Petrescu, 2013a. Lockheed Martin. 1st Edn., CreateSpace, pp: 114.

Petrescu, R.V. and F.I. Petrescu, 2013b. Northrop. 1st Edn., CreateSpace, pp: 96.

Petrescu, R.V. and F.I. Petrescu, 2013c. The Aviation History or New Aircraft I Color. 1st Edn., CreateSpace, pp: 292.

Petrescu, F.I. and R.V. Petrescu, 2012. New Aircraft II. 1st Edn., Books On Demand, pp: 138.

Petrescu, F.I. and R.V. Petrescu, 2011. Memories About Flight. 1st Edn., CreateSpace, pp: 652.

Petrescu, F.I.T., 2009. New aircraft. Proceedings of the 3rd International Conference on Computational Mechanics, Oct. 29-30, Brasov, Romania.

Petrescu, F.I., Petrescu, R.V., 2016a Otto Motor Dynamics, GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 6(3):3392-3406.

Petrescu, F.I., Petrescu, R.V., 2016b Dynamic Cinematic to a Structure 2R, GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 6(2):3143-3154.

Petrescu, F.I., Petrescu, R.V., 2014a Cam Gears Dynamics in the Classic Distribution, Independent Journal of Management & Production, 5(1):166-185.

Petrescu, F.I., Petrescu, R.V., 2014b High Efficiency Gears Synthesis by Avoid the Interferences, Independent Journal of Management & Production, 5(2):275-298.

Petrescu, F.I., Petrescu R.V., 2014c Gear Design, ENGEVISTA, 16(4):313-328.

Petrescu, F.I., Petrescu, R.V., 2014d Balancing Otto Engines, International Review of Mechanical Engineering 8(3):473-480.

Petrescu, F.I., Petrescu, R.V., 2014e Machine Equations to the Classical Distribution, International Review of Mechanical Engineering 8(2):309-316.

Petrescu, F.I., Petrescu, R.V., 2014f Forces of Internal Combustion Heat Engines, International Review on Modelling and Simulations 7(1):206-212.

Petrescu, F.I., Petrescu, R.V., 2014g Determination of the Yield of Internal Combustion Thermal Engines, International Review of Mechanical Engineering 8(1):62-67.

Petrescu, F.I., Petrescu, R.V., 2014h Cam Dynamic Synthesis, Al-Khwarizmi Engineering Journal, 10(1):1-23.

Petrescu, F.I., Petrescu R.V., 2013a Dynamic Synthesis of the Rotary Cam and Translated Tappet with Roll, ENGEVISTA  15(3):325-332.

Petrescu, F.I., Petrescu, R.V., 2013b Cams with High Efficiency, International Review of Mechanical Engineering 7(4):599-606.

Petrescu, F.I., Petrescu, R.V., 2013c An Algorithm for Setting the Dynamic Parameters of the Classic Distribution Mechanism, International Review on Modelling and Simulations 6(5B):1637-1641.

Petrescu, F.I., Petrescu, R.V., 2013d Dynamic Synthesis of the Rotary Cam and Translated Tappet with Roll, International Review on Modelling and Simulations 6(2B):600-607.

Petrescu, F.I., Petrescu, R.V., 2013e Forces and Efficiency of Cams, International Review of Mechanical Engineering 7(3):507-511.

Petrescu, F.I., Petrescu, R.V., 2012a Echilibrarea motoarelor termice, Create Space publisher, USA, November 2012, ISBN 978-1-4811-2948-0, 40 pages, Romanian edition.

Petrescu, F.I., Petrescu, R.V., 2012b Camshaft Precision, Create Space publisher, USA, November 2012, ISBN 978-1-4810-8316-4, 88 pages, English edition.

Petrescu, F.I., Petrescu, R.V., 2012c Motoare termice, Create Space publisher, USA, October 2012, ISBN 978-1-4802-0488-1, 164 pages, Romanian edition.

Petrescu, F.I., Petrescu, R.V., 2011a Dinamica mecanismelor de distributie, Create Space publisher, USA, December 2011, ISBN 978-1-4680-5265-7, 188 pages, Romanian version.

Petrescu, F.I., Petrescu, R.V., 2011b Trenuri planetare, Create Space publisher, USA, December 2011, ISBN 978-1-4680-3041-9, 204 pages, Romanian version.

Petrescu, F.I., Petrescu, R.V., 2011c Gear Solutions, Create Space publisher, USA, November 2011, ISBN 978-1-4679-8764-6, 72 pages, English version.

Petrescu, F.I. and R.V. Petrescu, 2005. Contributions at the dynamics of cams. Proceedings of the 9th IFToMM International Symposium on Theory of Machines and Mechanisms, (TMM’ 05), Bucharest, Romania, pp: 123-128.

Petrescu, F. and R. Petrescu, 1995. Contributii la sinteza mecanismelor de distributie ale motoarelor cu ardere internã. Proceedings of the ESFA Conferinta, (ESFA’ 95), Bucuresti, pp: 257-264.

Petrescu, FIT., 2015a Geometrical Synthesis of the Distribution Mechanisms, American Journal of Engineering and Applied Sciences, 8(1):63-81. DOI: 10.3844/ajeassp.2015.63.81

Petrescu, FIT., 2015b Machine Motion Equations at the Internal Combustion Heat Engines, American Journal of Engineering and Applied Sciences, 8(1):127-137. DOI: 10.3844/ajeassp.2015.127.137

Petrescu, F.I., 2012b Teoria mecanismelor – Curs si aplicatii (editia a doua), Create Space publisher, USA, September 2012, ISBN 978-1-4792-9362-9, 284 pages, Romanian version, DOI: 10.13140/RG.2.1.2917.1926

Petrescu, F.I., 2008. Theoretical and applied contributions about the dynamic of planar mechanisms with superior joints. PhD Thesis, Bucharest Polytechnic University.

Petrescu, FIT.; Calautit, JK.; Mirsayar, M.; Marinkovic, D.; 2015 Structural Dynamics of the Distribution Mechanism with Rocking Tappet with Roll, American Journal of Engineering and Applied Sciences, 8(4):589-601. DOI: 10.3844/ajeassp.2015.589.601

Petrescu, FIT.; Calautit, JK.; 2016 About Nano Fusion and Dynamic Fusion, American Journal of Applied Sciences, 13(3):261-266.

Petrescu, R.V.V., R. Aversa, A. Apicella, F. Berto and S. Li et al., 2016a. Ecosphere protection through green energy. Am. J. Applied Sci., 13: 1027-1032. DOI: 10.3844/ajassp.2016.1027.1032

Petrescu, F.I.T., A. Apicella, R.V.V. Petrescu, S.P. Kozaitis and R.B. Bucinell et al., 2016b. Environmental protection through nuclear energy. Am. J. Applied Sci., 13: 941-946.

Petrescu, F.I., Petrescu R.V., 2017 Velocities and accelerations at the 3R robots, ENGEVISTA 19(1):202-216.

Petrescu, RV., Petrescu, FIT., Aversa, R., Apicella, A., 2017 Nano Energy, Engevista, 19(2):267-292.

Petrescu, RV., Aversa, R., Apicella, A., Petrescu, FIT., 2017 ENERGIA VERDE PARA PROTEGER O MEIO AMBIENTE, Geintec, 7(1):3722-3743.

Aversa, R., Petrescu, RV., Apicella, A., Petrescu, FIT., 2017 Under Water, OnLine Journal of Biological Sciences, 17(2): 70-87.

Aversa, R., Petrescu, RV., Apicella, A., Petrescu, Fit., 2017 Nano-Diamond Hybrid Materials for Structural Biomedical Application, American Journal of Biochemistry and Biotechnology, 13(1): 34-41.

 

Syed, J., Dharrab, AA., Zafa, MS., Khand, E., Aversa, R., Petrescu, RV., Apicella, A., Petrescu, FIT., 2017 Influence of Curing Light Type and Staining Medium on the Discoloring Stability of Dental Restorative Composite, American Journal of Biochemistry and Biotechnology 13(1): 42-50.

Aversa, R., Petrescu, RV., Akash, B., Bucinell, R., Corchado, J., Berto, F., Mirsayar, MM., Chen, G., Li, S., Apicella, A., Petrescu, FIT., 2017 Kinematics and Forces to a New Model Forging Manipulator, American Journal of Applied Sciences 14(1):60-80.

Aversa, R., Petrescu, RV., Apicella, A., Petrescu, FIT., Calautit, JK., Mirsayar, MM., Bucinell, R., Berto, F., Akash, B., 2017 Something about the V Engines Design, American Journal of Applied Sciences 14(1):34-52.

Aversa, R., Parcesepe, D., Petrescu, RV., Berto, F., Chen, G., Petrescu, FIT., Tamburrino, F., Apicella, A., 2017 Processability of Bulk Metallic Glasses, American Journal of Applied Sciences 14(2): 294-301.

Petrescu, RV., Aversa, R., Akash, B., Bucinell, R., Corchado, J., Berto, F., Mirsayar, MM., Calautit, JK., Apicella, A., Petrescu, FIT., 2017 Yield at Thermal Engines Internal Combustion, American Journal of Engineering and Applied Sciences 10(1): 243-251.

Petrescu, RV., Aversa, R., Akash, B., Bucinell, R., Corchado, J., Berto, F., Mirsayar, MM., Apicella, A., Petrescu, FIT., 2017 Velocities and Accelerations at the 3R Mechatronic Systems, American Journal of Engineering and Applied Sciences 10(1): 252-263.

Berto, F., Gagani, A., Petrescu, RV., Petrescu, FIT., 2017 A Review of the Fatigue Strength of Load Carrying Shear Welded Joints, American Journal of Engineering and Applied Sciences 10(1):1-12.

Petrescu, RV., Aversa, R.,  Akash, B., Bucinell, R., Corchado, J., Berto, F., Mirsayar, MM., Apicella, A., Petrescu, FIT., 2017 Anthropomorphic Solid Structures n-R Kinematics, American Journal of Engineering and Applied Sciences 10(1): 279-291.

Aversa, R., Petrescu, RV., Akash, B., Bucinell, R., Corchado, J., Berto, F., Mirsayar, MM., Chen, G., Li, S., Apicella, A., Petrescu, FIT., 2017 Something about the Balancing of Thermal Motors, American Journal of Engineering and Applied Sciences 10(1):200-217.

Petrescu, RV., Aversa, R., Akash, B., Bucinell, R., Corchado, J., Berto, F., Mirsayar, MM., Apicella, A., Petrescu, FIT., 2017 Inverse Kinematics at the Anthropomorphic Robots, by a Trigonometric Method, American Journal of Engineering and Applied Sciences, 10(2): 394-411.

Petrescu, RV., Aversa, R., Akash, B., Bucinell, R., Corchado, J., Berto, F., Mirsayar, MM., Calautit, JK., Apicella, A., Petrescu, FIT., 2017 Forces at Internal Combustion Engines, American Journal of Engineering and Applied Sciences, 10(2): 382-393.

Petrescu, RV., Aversa, R., Akash, B., Bucinell, R., Corchado, J., Berto, F., Mirsayar, MM., Apicella, A., Petrescu, FIT., 2017 Gears-Part I, American Journal of Engineering and Applied Sciences, 10(2): 457-472.

Petrescu, RV., Aversa, R., Akash, B., Bucinell, R., Corchado, J., Berto, F., Mirsayar, MM., Apicella, A., Petrescu, FIT., 2017 Gears-Part II, American Journal of Engineering and Applied Sciences, 10(2): 473-483.

Petrescu, RV., Aversa, R., Akash, B., Bucinell, R., Corchado, J., Berto, F., Mirsayar, MM., Apicella, A., Petrescu, FIT., 2017 Cam-Gears Forces, Velocities, Powers and Efficiency, American Journal of Engineering and Applied Sciences, 10(2): 491-505.

Aversa, R., Petrescu, RV., Apicella, A., Petrescu, FIT., 2017 A Dynamic Model for Gears, American Journal of Engineering and Applied Sciences, 10(2): 484-490.

Petrescu, RV., Aversa, R., Akash, B., Bucinell, R., Corchado, J., Berto, F., Mirsayar, MM., Kosaitis, S., Abu-Lebdeh, T., Apicella, A., Petrescu, FIT., 2017 Dynamics of Mechanisms with Cams Illustrated in the Classical Distribution, American Journal of Engineering and Applied Sciences, 10(2): 551-567.

Petrescu, RV., Aversa, R., Akash, B., Bucinell, R., Corchado, J., Berto, F., Mirsayar, MM., Kosaitis, S., Abu-Lebdeh, T., Apicella, A., Petrescu, FIT., 2017 Testing by Non-Destructive Control, American Journal of Engineering and Applied Sciences, 10(2): 568-583.

Petrescu, RV., Aversa, R., Li, S., Mirsayar, MM., Bucinell, R., Kosaitis, S., Abu-Lebdeh, T., Apicella, A., Petrescu, FIT., 2017 Electron Dimensions, American Journal of Engineering and Applied Sciences, 10(2): 584-602.

Petrescu, RV., Aversa, R., Kozaitis, S., Apicella, A., Petrescu, FIT., 2017 Deuteron Dimensions, American Journal of Engineering and Applied Sciences, 10(3).

Petrescu RV., Aversa R., Apicella A., Petrescu FIT., 2017 Transportation Engineering, American Journal of Engineering and Applied Sciences, 10(3).

Petrescu RV., Aversa R., Kozaitis S., Apicella A., Petrescu FIT., 2017 Some Proposed Solutions to Achieve Nuclear Fusion, American Journal of Engineering and Applied Sciences, 10(3).

Petrescu RV., Aversa R., Kozaitis S., Apicella A., Petrescu FIT., 2017 Some Basic Reactions in Nuclear Fusion, American Journal of Engineering and Applied Sciences, 10(3).

Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017a Modern Propulsions for Aerospace-A Review, Journal of Aircraft and Spacecraft Technology, 1(1).

Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017b Modern Propulsions for Aerospace-Part II, Journal of Aircraft and Spacecraft Technology, 1(1).

Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017c History of Aviation-A Short Review, Journal of Aircraft and Spacecraft Technology, 1(1).

Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Bucinell, Ronald; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017d Lockheed Martin-A Short Review, Journal of Aircraft and Spacecraft Technology, 1(1).

Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017e Our Universe, Journal of Aircraft and Spacecraft Technology, 1(1).

Petrescu, Relly Victoria; Aversa, Raffaella; Akash, Bilal; Corchado, Juan; Berto, Filippo; Mirsayar, MirMilad; Apicella, Antonio; Petrescu, Florian Ion Tiberiu; 2017f What is a UFO?, Journal of Aircraft and Spacecraft Technology, 1(1).

Petrescu, RV., Aversa, R., Akash, B., Corchado, J., Berto, F., Mirsayar, MM., Apicella, A., Petrescu, FIT., 2017 About Bell Helicopter FCX-001 Concept Aircraft-A Short Review, Journal of Aircraft and Spacecraft Technology, 1(1).

Petrescu, RV., Aversa, R., Akash, B., Corchado, J., Berto, F., Mirsayar, MM., Apicella, A., Petrescu, FIT., 2017 Home at Airbus, Journal of Aircraft and Spacecraft Technology, 1(1).

Petrescu, RV., Aversa, R., Akash, B., Corchado, J., Berto, F., Mirsayar, MM., Kozaitis, S., Abu-Lebdeh, T., Apicella, A., Petrescu, FIT., 2017 Airlander, Journal of Aircraft and Spacecraft Technology, 1(1).

Petrescu, RV., Aversa, R., Akash, B., Corchado, J., Berto, F., Apicella, A., Petrescu, FIT., 2017 When Boeing is Dreaming – a Review, Journal of Aircraft and Spacecraft Technology, 1(1).

 

Also From This Author

The Evolution of Modern Flight: A Journey of Comfort, Safety, and Technological Marvels

The Evolution of Modern Flight: A Journey of Comfort, Safety, and Technological Marvels

The modern flight experience is a symphony of comfort, safety, and technological innovation. Today's air travel is not just about reaching a destination; it's about the journey itself. Passengers expect a seamless experience that offers relaxation, entertainment, and peace of mind. The aviation industry has risen to the challenge, transforming the cabin environment and enhancing safety measures to ensure that flying is not only a mode of transportation but a pleasurable experience akin to a vacation. This article delves into the advancements in aircraft design, propulsion systems, and the historical context that have shaped the modern flight experience.
Harnessing Sustainable Energy for Space Exploration

Harnessing Sustainable Energy for Space Exploration

The quest for sustainable energy solutions is propelling the aerospace industry into a new era of space exploration. With advancements in solar technology and electric propulsion, NASA and other space agencies are developing innovative systems capable of powering spacecraft for long-duration missions, including the ambitious goal of sending humans to Mars. This article delves into the latest developments in solar electric propulsion (SEP) and the potential of nuclear fusion as a game-changing energy source for future space travel.
Project HARP

Project HARP

The HARP project, abbreviated from the High Altitude Project, was considered a joint project of the United States Department of Defense and Canada's Department of Defense, originally designed to study low-cost re-entry vehicles. Generally, such projects used rocket launchers to launch missiles, costly and often inefficient. The HARP project used a non-rocket space launch method based on a very large weapon capable of sending objects at high altitudes using very high speeds.