Cancer Immunotherapy: A Collection of Latest Findings

Dec 2


Alex Dean

Alex Dean

  • Share this article on Facebook
  • Share this article on Twitter
  • Share this article on Linkedin

This article is a collection of latest fidings on immunotherapy.




  1. Cancer Res: Scientists identify potential new targets for cancer immunotherapy: GARP

According to the American Cancer Society,Cancer Immunotherapy: A Collection of Latest Findings Articles colorectal cancer is the third leading cause of cancer death in men and women. Although significant progress has been made in the treatment of such cancers, the 5-year survival rate of colorectal cancer patients is only 12%. Recently, in a research report published in Cancer Research, scientists from the University of South Carolina Medical University found a potential new target for colorectal cancer immunotherapy.

Similar to PD-1, GARP is a special protein expressed on the surface of immune cells. Researchers hope to target GARP protein as a novel therapy for colorectal cancer patients that does not respond to other immunotherapy. There are many things scientists could do with the immune system in the treatment of cancer. PD-1 checkpoint therapy is one of them. Researchers believe that GARP is also one of the targets that can be utilized.

  1. CCR: Discovery of new immunotherapy for the treatment of malignant tumors

Recently, researchers from institutions such as Turku University in Finland explored the effects of macrophage scavenger receptor Clever-1 on tumor growth in a variety of mouse tumor models through conditional knockout, bone marrow chimera and cell depletion experiments. These tumor models are characterized by inflammation or non-inflammation. In addition, the researchers tested the immunotherapeutic efficacy of inhibiting Clever-1 as an immunotherapy or in combination with anti-PD-1 inhibitors.

Gene defects in Clever-1 in macrophages significantly inhibit solid tumor growth. This effect is mediated by macrophages that become immunoregulatory phenotypes under Clever-1 deletion conditions, which reverse the tumor immunosuppressive microenvironment to the inflammatory environment while activating endogenous anti-tumor CD8 positive T cells. A similar therapeutic effect can be achieved by immunotherapeutic inhibition of Clever-1. It is worth noting that these effects are comparable to anti-PD-1 inhibitors. In addition, the anti-Clever-1 and anti-PD-1 combined therapy can produce synergistic effects in malignant, non-responsive advanced tumors, inhibiting tumor growth.

  1. Cell Chem Biol: A new high-throughput screening platform can help find more new drugs in cancer immunotherapy

Checkpoint inhibitors are a major breakthrough in the treatment of cancer immunotherapy, which allows immune cells to regain their activity and kill cancer cells. In general, these factors are antibodies, which are highly specific and are not easy to spread in the body. If scientists want to enhance the ability of immune cells to kill cancer cells, then they need a variety of tools, such as a large library of many traditional small molecules, all they need is to find a screening method, and a platform that can screen thousands of drugs.

Recently, in a research report published in Cell Chemical Biology, scientists from the Emory University School of Medicine found that a class of drugs called IAP antagonists currently used in the clinic can promote the body’s immune activity to resist cancer cells. Although FDA has approved checkpoint inhibitors for the treatment of a variety of cancers, many patients do not benefit from this, and it may be possible to find drugs that can “release” other immune responses. This will definitely improve the anti-cancer efficacy of these patients, especially those who are not effectively treated by checkpoint inhibitors.

  1. Sci Rep: Scientists identify new molecules involved in T cell activation, which is expected to help develop new cancer immunotherapy

When bacteria and viruses enter the body, the proteins carried on the surface will be recognized by the body, and then T cells will be activated. T cells are important white blood cells that can help the body effectively resist infection. During cell activation, a molecular complex called the microtubule-organizing center (MTOC) moves to the center of the T cell surface. Microtubules have many important functions, including determining the shape of the cell and cell division, and the reduction of MTOC plays a key role in the immune response of activated T cells. 

Recently, in a research report published in Scientific Reports, scientists from Tokyo Institute of Technology discovered a microtubule-binding protein called CLIP-170, which is responsible for activating the repositioning of MTOC in T cells.

  1. Nat Med: Immunotherapy is effective for specific brain cancers

Immunotherapy has proven to be effective in treating a variety of cancers, but seemingly not including brain. Now, a new study shows that patients with type 1 neurofibromatosis (NF1) and having a slowly growing brain tumor may be susceptible to immunotherapy treatment.

The results of an international consortium led by researchers at Columbia University's Vagelos Physician and Surgeons College were published online today in the journal Nature Medicine. It is estimated that 100,000 people in the United States suffer from NF1, a hereditary disease that can lead to the development of tumors throughout the nervous system, including a brain tumor called glioma. Children usually have a slow-growing type of glioma, and adults usually have a more aggressive type.

But whether or not it grows slowly, gliomas are difficult to treat. Most people are highly resistant to chemotherapy, and radiotherapy can aggravate symptoms rather than relieve headaches and epilepsy. Surgery is rarely an option because tumors often engulf vulnerable areas of the brain.

This article is written by scientists from BOC Sciences. Having been a trust-worthy chemical vendor for at least two decades, BOC Sciences keeps close watch on the latest trend and innovations in drug discovery, and at the same time, offering a comprehensive collection of chemicals such as checkpoint inhibitors as well as small molecule inhibitors like Antibacterial Inhibitor, CD30 Inhibitor, B7H3 Inhibitor, TIGIT Inhibitor, HHLA2 Inhibitor, B7-H4 Inhibitor, HHLA2 Inhibitor, 5 alpha Reductase Inhibitor, CD155 Inhibitor, CCR Inhibitor, STING Inhibitor.